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Abstract
The large size of the pig and its similarity in anatomy, physiology, metabolism, and genetics

to humans make it an ideal platform to develop a genetically defined, large animal model of

cancer. To this end, we created a transgenic “oncopig” line encoding Cre recombinase in-

ducible porcine transgenes encoding KRASG12D and TP53R167H, which represent a com-

monly mutated oncogene and tumor suppressor in human cancers, respectively. Treatment

of cells derived from these oncopigs with the adenovirus encoding Cre (AdCre) led to

KRASG12D and TP53R167H expression, which rendered the cells transformed in culture and

tumorigenic when engrafted into immunocompromised mice. Finally, injection of AdCre di-

rectly into these oncopigs led to the rapid and reproducible tumor development of mesen-

chymal origin. Transgenic animals receiving AdGFP (green fluorescent protein) did not

have any tumor mass formation or altered histopathology. This oncopig line could thus

serve as a genetically malleable model for potentially a wide spectrum of cancers, while

controlling for temporal or spatial genesis, which should prove invaluable to studies previ-

ously hampered by the lack of a large animal model of cancer.

Introduction
A large animal model of cancer would be beneficial in settings requiring size, anatomy, metab-
olism, or genetics reflective of humans, such as for studies of noninvasive image-guided tech-
nologies, radiation oncology, drug metabolism, surgical training, technology development (e.g.,
early detection screening), to name but just a few [1,2]. In this regard, the pig is an ideal large
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animal platform to develop such a model. These are large mammals with similar anatomy to
humans [1,2]. Both their basal metabolic rate and their xenosensor pregnane X receptor that
regulates CYP3A expression, which is responsible for the metabolism of half of all prescription
drugs [3], are also very similar to humans [4,5]. Like humans, pigs also require multiple genetic
changes to develop cancer [6].

To develop a porcine model of cancer, we chose to recapitulate those mutations most com-
monly found in human cancer. Previously, we had demonstrated that human mutations when
provided in gene expression studies using autologous porcine fibroblasts resulted in oncogenes
molecularly similar to that observed in humans and with similar pathology [6]. In this study,
we have targeted the RAS gene which is mutated in one quarter of all human cancers, with the
KRAS isoform being the most commonly mutated [7] yielding a constitutively active, oncogen-
ic protein [7] that experimentally induces cancer in mice [8] and human cells [9], in addition
to underlying a number of hereditary cancer syndromes [10]. The gene TP53 is mutated in a
third of human cancers [11] to silence this tumor suppressive pathway, which similarly is
known to promote cancer in both mouse [12] and porcine [13] genetic models as well as in
human cells [9], and is associated with the cancer predisposition Li-Fraumeni Syndrome [14].
Mutations in these two genes occur in concert in human cancers (COSMIC) [15]. Moreover,
mice genetically engineered to undergo recombination to convert their wild-type Kras and
TP53 alleles to oncogenic and dominant-negative or null versions, respectively, rapidly develop
aggressive cancers at the sites of recombination [16,17]. With regards to pigs, both oncogenic
Kras and dominant-negative p53 help promote the tumorigenic conversion of normal porcine
cells to a tumorigenic state [6], and pigs engineered with a mutant TP53 allele are prone to de-
velop lymphomas and osteogenic tumors [13]. Most recently, a conditionally activated onco-
genic KRAS mutation in pigs has been reported [18]. As such, we chose to engineer pigs with
inducible expression of these commonly mutated and potent oncogene and tumor suppressor
genes.

Results

Creation of oncopigs encoding inducible oncogenic KRAS and
dominant-negative TP53
To create an inducible porcine model of cancer, which we term “oncopig”, we first cloned the
porcine KRAS and TP53 cDNAs from the Duroc pig (2–14, TJ Tabasco) that was used to se-
quence the pig genome [19]. Site-directed mutagenesis was then used to introduce the onco-
genic G12D mutation into the porcine KRAS cDNA. This mutation was chosen as an aspartic
acid substitution accounts for over a third of the mutations at the G12 position in human can-
cers [7] and introducing this mutation into the endogenous murine Kras gene promotes tu-
morigenesis [8,20]. Similarly, the R167H mutation was chosen as its human equivalent
(R175H) is commonly found in human cancers [11] as well as the cancer predisposition Li-
Fraumeni Syndrome [14], and when introduced into the endogenous murine [12] or porcine
[13] TP53 gene, induces tumors. These two cDNAs were then introduced into a Cre-inducible
vector, yielding an expression construct containing the CAG promoter, followed by the afore-
mentioned LSL sequence, KRASG12D, an IRES sequence to allow for bicistronic expression,
TP53R167H and a poly A sequence (Fig 1a). This design allows for co-expression of both
KRASG12D and TP53R167H in ostensibly any cells of the pig by transient infection with AdCre,
which in principle should allow induction of a broad range of cancers in specific tissue sites
and at any chosen time.

Normal porcine embryonic fibroblasts [21] were transfected with the above plasmid and
stably transfected cell clones selected in G418-supplemented medium. Genomic DNA from the
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cell colonies was used to verify the presence of both transgenes (KRASG12D and TP53R167H) by
PCR assayed using primers specific for these transcripts, and were subsequently expanded for
the source of nuclei for nuclear transfer. Nuclei from these cells were then isolated and trans-
ferred to enucleated porcine oocytes and embryogenesis activated, a process termed somatic
cell nuclear transfer (SCNT) [21]. A total of>100 such embryos were transferred to a surrogate
sow, which yielded four male oncopig offspring (63–1, 63–2, 63–3, 63–4). PCR analysis of iso-
lated genomic DNA using primers specific for these transgenes confirmed stable integration of
the KRASG12D and TP53R167H cDNAs (Fig 1b).

Cre activation of the KRASG12D and TP53R167H transgenes in
fibroblasts derived from the oncopigs is transforming
To assess whether the KRASG12D and TP53R167H transgenes could be activated to promote tu-
morigenesis, skin biopsies were isolated from the aforementioned four oncopig offspring, and
used to establish fibroblast lines. These individual cell lines from transgenic oncopigs were in-
fected with either adenovirus encoding the marker green fluorescence protein (AdGFP) or ade-
novirus encoding Cre recombinase (AdCre), and the resultant matched pairs of infected
cultures were assayed for transformed and tumorigenic phenotypes. As expected, only the
AdCre exposed cells exhibited detectable levels of KRASG12D and TP53R167H mRNA, as assessed
by RT-PCR (Fig 2a). Additionally, there was a clear difference in the morphology of the AdCre
cells compared to the control AdGFP cells. Specifically, the former lost the spindle morphology
characteristic of either the same cells prior to AdCre infection or when infected with the

Fig 1. The Cre-inducible vector encoding KRASG12D and TP53R167H. (a) Schematic diagram of the vector encoding Cre-inducible KRASG12D and
TP53R167H. (b) PCR analysis for the presence of KRASG12D and TP53R167H in genomic DNA isolated from the indicated cloned offspring.

doi:10.1371/journal.pone.0128864.g001

Porcine Cancer Model

PLOS ONE | DOI:10.1371/journal.pone.0128864 July 1, 2015 3 / 18



AdGFP control virus, and instead were smaller, rounder much more loosely attached to the
plate and would spontaneously form foci (Fig 2B). This difference foreshadowed other trans-
formed phenotypes. Specifically, FACS analysis revealed mean cell cycle length of all four lines
was shortened from 22 hours in the AdGFP control population to 13 hours in the AdCre popu-
lation (Fig 2c). AdCre cells also exhibited a mean 2.8 fold increase in cell migration of all four
lines throughout the entire time course of observation (Fig 2d), as assessed by a scratch assay,
and produced an average of 143 colonies when plated in soft agar compared to no colonies de-
tected in the control AdGFP cells (Fig 2e). We concluded that fibroblast lines developed from
independently derived KRASG12D/TP53R167H oncopig clones were induced to be transformed
upon activation of the expression of these transgenes by Cre recombinase. AdGFP treated
transgenic cells maintained phenotypes similar to those observed for non-transgenic cell lines.

Cre activation of the KRASG12D and TP53R167H transgenes in fibroblasts
derived from the oncopigs is tumorigenic
Encouraged by the development of transformed phenotypes, we next assessed whether AdCre
could induce the above fibroblasts to grow in a tumorigenic fashion. Thus, AdCre treated cells
derived from four independently-derived transgenic oncopigs were injected into immuno-
compromised female mice and the site of injection monitored for the development of tumors.
Palpable tumors reached 2000 mm3 (the maximal allowed size) between 32 and 63 days post-
injection—with complete penetrance days (Table 1). In contrast, no tumors were detected at
the sites injected with cells from the transgenic oncopig cells treated with AdGFP over a
130-day period of observation (Table 1). We conclude that fibroblasts isolated from

Fig 2. Inducible expression ofKRASG12D and TP53R167H is transforming and tumorigenic. (a) RT-PCR analysis of KRASG12D and TP53R167H mRNA
expression in the fibroblast cell lines from each of the 4 transgenic clones treated with AdCre or AdGFP. (b) Comparison of cell morphology between AdCre
and untreated control cells in culture, stained with H&E. (c) Normalized MFUmeasured by FACS at time points following Carboxyfluorescein succinimidyl
ester (CFSE) dye loading of cells. (d) Graphical analysis of the mean number of migrating cells from triplicate plating of each of the 4 cell lines. (e) Graphical
analysis of the mean number of colonies growing in soft agar for each cell line from triplicate plating. (c-e: all data points are the mean of the 4 cell lines
derived from pigs 63–1, 63–2, 63–3, 63–4; error bars = SD; *p-value� 0.05; **p-value� 0.01).

doi:10.1371/journal.pone.0128864.g002
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independent KRASG12D/TP53R167H oncopigs were induced to be tumorigenic upon activation
of the expression of these transgenes by Cre recombinase. The tumor masses resulting from
AdCre activation of cells from transgenic oncopigs (Fig 3) revealed under both high and low
magnification evidence of solid tumor (Fig 3b) and were not the result of inflammation or
fluid accumulation.

The tumor tissue included nonencapsulated, densely cellular, and locally infiltrative neo-
plasm. Neoplastic cells were arranged in sheets and bundles supported by very fine fibrovascu-
lar stroma. Individual neoplastic cells were round to spindeloid with mild to abundant
fibrillary to eosinophilic cytoplasm. Nuclei were single to multiple, with round to oval shape
and contain single prominent nucleolus and scattered chromatin. Neoplastic cells exhibited
moderate to marked anisocytosis and anisokaryosis. Mitotic figures range from 3 to 8 per 10
high power fields (hpf). Areas of necrosis were scattered within the tumor. Neoplastic cells had
invaded surrounding tissues including skeletal muscle, epidermis, kidney and ovary. Small
numbers of lymphocytes and rare neutrophils were scattered within the tumors.

Table 1. Induction of Tumors Following Injection of AdCre or AdGFP treated Oncopig Transgenic Cells into Immunocompromised Mice (Days to
2000 mm3).

Mouse Oncopig Transgenic Cell Line

63–1 63–2 63–3 63–4

AdCRE1 AdGFP AdCRE1 AdGFP AdCRE1 AdGFP AdCRE1 AdGFP

1 9 NPG2 9 NPG 59 NPG 59 NPG

2 32 NPG 13 NPG 115 NPG 58 NPG

3 55 NPG 76 NPG 59 NPG 65 NPG

4 ND ND ND ND 20 NPG 65 NPG

Mean 32 32 63 60

1 For each cell line 5x106 cells were mixed with Matrigel (BD Biosciences, San Diego, CA, USA) and injected subcutaneously into the flanks (left flank,

AdCre and right flank, AdGFP) of 3 or 4 severe combined immunodeficient female mice (NOD.CB17-Prkdcscid/ JAX, Bar Harbor, ME).
2 No palpable growth (NPG) was identified for any of the AdGFP cell lines.

doi:10.1371/journal.pone.0128864.t001

Fig 3. Tumors arose from each AdCre treated cell line injected into immune compromised mice. Similar tumors (a) developed from all AdCre cell lines
and no tumors developed from AdGFP cell injections; Histological analysis (b) revealed the tumors to be densely cellular non encapsulated and infiltrative
neoplasm. 10x and insert 40X H&E Stain.

doi:10.1371/journal.pone.0128864.g003
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Intramuscular injection of AdCre in oncopigs reproducibly induces
tumors at the site of injection
Given the above observations, we next tested whether exposure of AdCre in vivo would induce
tumors at the site of injection in transgenic oncopigs. To this end, pig 63–3 was used to produce
a cohort of transgenic littermate oncopigs for this analysis. Pig 63–3 was selected following
DNA sequence analysis indicating that the transgene construct was inserted at a single location
within intron 4 of the porcine CCDC-129 gene (coiled-coil domain containing 129) located on
SSC18. Furthermore, the insertion was oriented in a 3’ to 5’ direction relative to the chromo-
some and there was no evidence of a concactomer. Thus, the oncogene construct (Fig 1a) from
boar 63–3 would be inherited as a single autosomal gene.

The first of these, oncopig-1, was administered AdCre intramuscularly into the left hind leg.
A tumor mass was detected by day 10 post-injection, which was clearly visible by ultrasound
(Table 2 and Fig 4a and 4d). Not only was this tumor rapidly established, but it also grew
quickly, reaching a volume of 8 cm2 within 20 days. Pathologic analysis of H&E stained sec-
tions of the tumor revealed this tumor to be of mesenchymal origin (Fig 4g and Table 2). Spe-
cifically, the tumor was microscopically characterized as a densely cellular, non-encapsulated
and locally infiltrative neoplasm. The cells are arranged in bundles, streams and small sheets of
supported by a fibrous stroma. Individual neoplastic cells were pleomorphic round to oval to
polygonal with single to multiple nuclei. Areas of necrosis and chronic inflammation were scat-
tered within the tumor (Fig 4g). Neoplastic cells were stained positively with vimentin and
smooth muscle markers (muscle specific actin and smooth muscle actin). This was a

Table 2. Summary of porcine tumor growth in vivo.

Animala Injection Siteb Dosec Ultrasound
Diameterd

Tumor
Sizee

KrasG12D

Expressionf
p53R167H

Expressionf
Pathology

Pig 1 IM (Right Leg) 2x109 1.25 3 x 1.5 15.83 16.34 Mesenchymal
Tumor

Pig 1 IM (Left Leg) 2x109 1.12 4 x 2 12.55 8.28 Mesenchymal
Tumor

Pig 1 IT (Right Testis) 2x109 0.63 2 x 1.5 Mesenchymal
Tumor

Pig 2 IM (Right Leg) 1x109 1.72 1.3 x 0.7 44.01 20.71 Mesenchymal
Tumor

Pig 2 IM (Left Leg) 1x109 0.91 3.3 x 1 94.55 6.60 Mesenchymal
Tumor

Pig 2 IM (Neck) 1x109 0.6 1 x 1.2 Mesenchymal
Tumor

Pig 3 SQ (Right Ear) 1x109 0.62 0.7 x 0.6 Mesenchymal
Tumor

Pig 3 SQ (Right Neck) 1x109 1.02 2 x 0.8 Mesenchymal
Tumor

Pig 3 SQ (Right
Abdomen)

1x109 0.93 1 x 2 Mesenchymal
Tumor

a Offspring sired by clone 63–3
bIM, intramuscular; SQ, subcutaneous; IT, intra-testicular
cConcentration of 2x109 pfu AdCre/ml
dSize 10 days post-injection (cm)
eSize 20 days post-injection (cm)
fRatio of normalized RNAseq levels between AdCre induced tumor tissue RNA/untreated transgenic muscle tissue RNA

doi:10.1371/journal.pone.0128864.t002
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reproducible result, as intramuscular injection of AdCre into the other rear leg similarly yielded
a tumor of mesenchymal origin at the site of injection (Table 2). Moreover, tumorigenesis was
induced in other littermate offspring, indicating this was not unique to a single animal tested.
Specifically, AdCre was injected intramuscularly into two legs and the neck of oncopig-2, re-
sulting in tumor masses at all three injection sites, with pathological analysis of H&E stained
sections again supporting a mesenchymal tumor diagnosis (Table 2). Isolation of RNA from
the resulting tumor masses was used to monitor the expression of mutant transgenic tran-
scripts (Table 2). Both KRASG12D and TP53R167H transgenes were expressed in tumors excised
at autopsy. The expression of mutant over wild type transcripts was elevated in each of the sites

Fig 4. Inducible expression ofKRASG12D and TP53R167H is tumorigenic in transgenic pigs. (a–c) Ultrasound images of tumors developing 10 days after,
and (d–f) images of these tumors at necropsy 20 days after intramuscular (IM, Pig 1), subcutaneous (SQ, Pig 3), or intra-testicular (IT, Pig 1) injection of
AdCre in transgenic oncopigs containing a Cre-inducible vector encoding KRASG12D and TP53R167H; (g–i) H&E stained sections show the tumor and
adjacent normal tissue (2x) with an inserted high magnification photo (20x).

doi:10.1371/journal.pone.0128864.g004
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monitored. Control non-transgenic animals exposed to AdCre and transgenic pigs exposed to
AdGFP did not reveal any tumor masses nor pathological changes (Fig 5).

Different tumor types can be induced in the oncopig based upon the
injection site of AdCre
To explore whether injection of AdCre in other tissues could lead to tumors, a testis of onco-
pig-1 was injected with AdCre. Again, a palpable mass was detected 10 days post-injection that
rapidly developed into a tumor (Fig 4c, 4f, 4i and Table 2). Histopathology of this tumor re-
vealed a poorly differentiated tumor likely of sex cord stromal origin. Similarly, the ear, abdo-
men and neck of oncopig-3 were injected subcutaneously with AdCre, which again led to

Fig 5. Injection of AdGFP into transgenic pigs did not induce tumors. The lack of any detectable changes to the injection site on d20 post- injection is
shown at the surface (a–c); in underlying tissue (d–f); or upon histological examination (g–i).

doi:10.1371/journal.pone.0128864.g005
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tumor masses at all three sites with the pathology of sarcoma with regional smooth muscle dif-
ferentiation (leiomyosarcoma) (Fig 4b, 4e, 4h and Table 2). Thus, the administration of AdCre
reproducibly induced tumorigenesis in transgenic oncopigs at each injection site. The adminis-
tration of AdGFP into additional oncopigs did not result in the generation of tumor mass or
pathology (Fig 5).

Discussion
The pig has many attributes that make it an ideal platform to develop a genetically defined,
large animal model of cancer. We now report the creation of a transgenic oncopig line encod-
ing a Cre recombinase inducible transgene encoding KRASG12D and TP53R167H, a commonly
mutated oncogene [7] and tumor suppressor [11], respectively, in human cancers. This study is
an extension on our previous work [6] where we demonstrated that mutations in genes identi-
fied in human studies when inserted into porcine genes did result in oncogenesis and pathology
that replicated tumors observed clinically.

In validating the porcine cancer animal model it is imperative that the resulting tumor mas-
ses are validated with what is observed in human medicine. This need has been clearly articu-
lated by Cardiff [22–24] where the neoplastic progression using the mouse for breast cancer
using human mutations failed to replicate tumors observed in the clinic. Thus, this study fo-
cused on demonstrating that genetically engineered porcine tumors result in histopathological
phenotypes that span from signature phenotypes to mimicking human cancers [24].

Thus, the porcine model was validated by the demonstration that derived fibroblasts from
transgenic oncopigs treated with AdCre demonstrated activation of the transgene, leading to
all the in vitro hallmarks of tumors, including a transformed cell morphology, increased prolif-
eration and migration, and the ability to growth in an anchorage-independent fashion. In
agreement, these cells were highly tumorigenic when explanted into immuno-compromised
mice. This effect was highly reproducible, arguing against the acquisition of a unique genetic
background predisposing a cell line to become transformed, as the same phenotypes were ob-
served in fibroblasts derived from a total of four individual oncopigs. Taken together, these
data support the conclusion that the derived oncopig fibroblasts are inducibly tumorigenic.

Consistent with the ability of the derived oncopig fibroblasts to be tumorigenic, an intra-
muscular injection of AdCre into transgenic oncopigs resulted in the development of a mesen-
chymal tumor suggestive of leiomyosarcoma at the site of injection. Again, this result was
highly reproducible, being observed not only in a different site within the same pig, but also in
different littermate oncopigs. As leiomyosarcoma are of smooth muscle origin, presumably
these tumors arose from infection of this muscle type, perhaps in the vasculature or the piloer-
ector muscles. AdCre injection into the testes gave rise to a differentiated tumor likely of sex
cord stromal origin. In addition, neither the control non-transgenic pigs injected with AdCre
nor the control oncopigs injected with AdGFP developed any tumor mass or pathological
changes. Taken together, these data support the conclusion that activation of cells in vivo by
AdCre induces tumorigenesis. Moreover, these data also suggest that induction of recombina-
tion in other tissues, vis-à-vis delivery of AdCre by different means than undertaken here or, in
the future by tissue-restricted expression of a Cre transgene, may lead to a host of other can-
cers. As such, this ‘oncopig’ line provides a genetically malleable model for potentially a wide
spectrum of cancers, which should prove invaluable to studies previously hampered by the lack
of a large animal model of cancer.
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Materials and Methods
All animal work was conducted according to relevant national and international guidelines. All
animal studies and procedures were approved by The University of Illinois Institutional Ani-
mal Care and Use Committee (IACUC; Protocol numbers 11221 for pig and 12170 for mouse
studies).

Cloning and sequencing of porcine KRAS and TP53 genes in TOPO
shuttle vector
TJ Tabasco porcine bone marrow cells were isolated and frozen at -80°C. Total RNA was ex-
tracted from these cells with RNeasy mini kit (QIAGEN, CA), 1ug of which was reverse tran-
scribed into cDNA with the QuantiTect Reverse Transcription Kit (QIAGEN, CA). Ensembl
genome browser was used to design the PCR primer sequences for amplification of porcine-
specific KRAS (ENSSSCG00000000561) and TP53 genes (ENSSSCT00000019534). The for-
ward and reverse primer sequences for KRAS were 5’-CTGCTGAAAATGACTGAATATAAA
CTT-3’ and 5’-TTACATAATTATACACTTTGTCTTTGA-3’, respectively. The PCR thermal
cycling conditions for KRAS amplification were 94°C for 10 min, followed by 30 cycles of 94°C
for 30 sec, 55°C for 3 min, and 65°C for 1 min with a final 72°C step for 10 min. The forward
and reverse primer sequences used for TP53 were 5’-TGCAATGGCGGAGTCGCAG-3’ and
5’-TCAGTCTGAGTCAGGTCCTTC-3’, respectively. The PCR thermal cycling conditions
were 94°C for 10 min, followed by 30 cycles of 94°C for 30 sec, 55°C for 30 sec, and 68°C for 1
min with a final 72°C step for 10 min. ACTB was used as an endogenous control. The forward
and reverse primer sequences used were 5’-GACATCCGCAAGGACCTCTA-3’ and 5’-ACA
TCTGCTGGAAGGTGGAC-3’, respectively. The PCR conditions used were the same as for
TP53. PCR amplified KRAS and TP53 cDNAs were then cloned into pCR2.1-TOPO vectors
using the TOPO TA cloning kit according to the manufacturer’s instructions (Invitrogen, CA)
and the cDNAs confirmed to have 100% nucleotide identity to porcine KRAS and TP53 (http://
useast.ensembl.org/index.html).

Site-directed mutagenesis of KRAS and TP53 cDNA
QuikChange Site-Directed Mutagenesis Kit (Stratagene, CA) was used to introduce changes to
the nucleotide sequence corresponding to the G12Dmutation into the cloned porcine KRAS
cDNA and the R167Hmutation into the cloned porcine TP53 cDNA. The primers used to gen-
erate the G12Dmutation in KRAS were 5’-TGGTAGTTGGAGCTGATGGCGTAGGCAAGAG-3’
and 5’-CTCTTGCCTACGCCATCAGCTCCAACTACCA-3’. The primers used to generate the
R167Hmutation in TP53 were 5’-GAGGTGGTGAGGCACTGTCCCCACCAT-3’ and 5’-ATG
GTGGGGACAGTGCCTCACCACCTC-3’. Mutations were confirmed by sequencing.

Cloning of KRASG12D and TP53R167H cDNAs into the pIRES vector
The aforementioned KRASG12D cDNA was PCR amplified with primers 5’-CTAGCTAGCTA
GCTGCTGAAAATGACTGAATAT-3’ and 5’-CCGCTCGAGCGGTTACATAATTATACAC-3’
for 30 cycles of 94°C for 1 min, 94°C for 30 sec, 60°C for 1 min, and 68°C for 1 min, and the re-
sultant fragment cloned into the NheI and XhoI sites of pIRES (Clontech, CA). The aforemen-
tioned TP53R167H cDNA was PCR amplified with primers 5’-ACGCGTGGACGTCTTGGCCA
TATGCAATGGAGGA3’ and 5’-ATAAGAATGCGGCCGCTAAACTATTCAGTCTGAGTCAGG
TCC-3’ for 30 cycles of 94°C for 1 min, 94°C for 30 sec, 65°C for 1 min, and 68°C for 1 min,
and the resultant fragment cloned into the SalI and NotI sites of pIRES containing the
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KRASG12D cDNA. cDNA sequences of KRASG12D and TP53R167H were confirmed correct in the
resultant vector by sequencing.

Cloning CAG promoter into a loxP-STOP(polyA)-loxP containing vector
The pkw15 plasmid containing the CAG promoter and the pkw13 plasmid containing LoxP--
STOP(polyA)-loxP were used for the vector construction. A CAG promoter was isolated by
SpeI/MfeI digestion and cloned into the pkw13 plasmid at SpeI/EcoRI cloning sites.

Construction of the inducible KRASG12D and TP53R167H oncopig
expression vector
The KRASG12D- TP53R167H –pIRES vector was digested with PvuI and NheI, and the resulting
KRASG12D-IRES- TP53R167H-polyA fragments were gel purified and cloned into CAG-LSL-
pkw13 vectors at PacI/NheI sites. cDNA sequences of KRASG12D and TP53R167H in the final
vector were confirmed correct in the resultant vector by sequencing.

Generation of fetal fibroblast strains
Male fetal fibroblasts cells (FFCs) from Minnesota miniature pigs (NSRRC:0005) were collect-
ed as described [25] with some modifications. Briefly, after removing the head and internal or-
gans, the fetus was minced and digested individually in 20 ml of digestion media (Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 15% (v/v) fetal bovine serum (FBS), 200
units/ml collagenase and 25 units/ml DNaseI) for 4–5 hrs at 38.5°C and 5% CO2 in air. Di-
gested cells were washed with DMEM supplemented with 15% FBS (Hyclone, Logan, UT) and
10 μg/ml gentamicin, cultured overnight, and then collected and frozen at −80°C in FBS sup-
plemented with 10% dimethyl sulfoxide (DMSO) (v/v) and stored in liquid nitrogen.

Production of transgenic cells
Early passage number FFCs (P1-2) were cultured in cell culture medium (DMEM supple-
mented with 15% (v/v) FBS, 2.5 ng/ml basic fibroblast growth factor and 10 μg/ml gentamicin)
overnight and grown to 75–85% confluency. Media was replaced 4 hrs prior to transfection.
FFCs were washed for 1–2 min with phosphate buffered saline (PBS; Invitrogen) and harvested
with 0.05% trypsin-EDTA (Invitrogen; 1 ml per 75cm2 flask). Cells were resuspended in cell
culture medium, pelleted at 600 × g for 10 min, resuspended in 10 ml Opti-MEM (Invitrogen),
and then quantified using a hemocytometer and repelleted. Cells were resuspended in transfec-
tion media (75% cytosalts [120 mMKCl, 0.15 mM CaCl2, 10 mM K2HPO4; pH 7.6, 5 mM
MgCl2] [26] and 25% Opti-MEM [Gibco BRL, Grand Island, NY]). The cell concentration was
adjusted to 1×106 cells/ml and 200 μl of cells were co-transfected by electroporation with line-
arized mutant KRAS and TP53 construct containing a Neo selectable casette (2 μg). Electropo-
ration utilized three consecutive 250-V, 1-ms square wave pulses administered through a BTX
ECM 2001 (BTX, San Diego, CA) in a 2 mm gap cuvette. After electroporation, cells were plat-
ed in a 100 mm dish at 3,000 cells per dish in cell culture medium. After 36 hrs, cells were se-
lected by the addition of geneticin (G418; 400 μg/ml) for 10–14 days until the formation of cell
colonies. Genomic DNA from the cell colonies was used to verify the presence of both trans-
genes by PCR. These cells then were stored in liquid nitrogen until used as donor cells for
SCNT.
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Oocyte maturation, SCNT, and embryo reconstruction
Fibroblast cells identified to have integration of the transgenes (KRAS and TP53) were used as
donor cells for SCNT into enucleated oocytes followed by electrical fusion and activation as
previously described [27]. In brief, cumulus-oocyte cell complexes (COCs) were received in
Phase I maturation medium from ART Inc. (Madison, WI) approximately 24 hrs after harvest.
COCs were then cultured in fresh Phase II maturation medium for a total of 40 hrs in a humid-
ified atmosphere of 5% CO2 at 38.5°C. Phase I and II medium were supplied by ART Inc. Ex-
panded COCs were then vortexed in 0.1% hyaluronidase in Hepes-buffered Tyrode’s medium
containing 0.01% PVA for 4 min to remove the cumulus cells. Oocytes having a visible first
polar body (PB) with uniform cytoplasm were selected and placed in fresh manipulation medi-
um (25 mMHepes-buffered TCM199 with 3 mg/ml BSA) containing 7.5μg/ml cytochalasin B
which was overlaid with warm mineral oil. The PB, MII chromosomes, and a small amount of
surrounding cytoplasm of the oocyte were enucleated using a beveled glass pipette with an
inner diameter of 17–20 μm. After enucleation, a donor cell was injected into the perivitelline
space and placed adjacent to the recipient cytoplasm. Karyoplast–cytoplast complexes were
fused and activated with 2 DC pulses (1 sec interval) of 1.2 kV/cm for 30 μsec provided by a
BTX Electro-cell Manipulator 200 in fusion medium (0.3 M mannitol, 1.0 mM CaCl2, 0.1 mM
MgCl2, and 0.5 mMHepes, pH adjusted to 7.0–7.4). After simultaneous fusion and activation,
only the fused embryos were cultured into four well cell plates (Nunc, Denmark) containing
500μl of PZM3 with 0.3% BSA and 500nM Scriptaid at 38.5°C and 5% CO2 in humidified air
for 14 to 16 hrs, until embryo transfer [27].

Embryo transfer and piglets production
More than 100 SCNT zygotes were surgically transferred to the oviducts of surrogates on the
day of, or one day after, the onset of estrus. The pregnant surrogates were monitored via ultra-
sound throughout pregnancy. Piglets were delivered via cesarean section from surrogates by
day 114–116 of gestation. Piglets are processed immediately and tissue samples were collected
for establishment of cell lines and PCR genotyping. Piglets were then hand-raised until wean-
ing (3–4 wks of age).

Generation and treatment of transgenic cells
Each cloned piglet was ear notched for identification and this tissue was used to establish in
vitro cell cultures. The skin biopsies were, minced and incubated overnight in collagenase type
II (400 U/ml, Life, USA), dissolved in DMEM (Life, USA) supplemented with 20% heat-inacti-
vated fetal bovine serum (FBS, Hyclone, Logan, UT, USA), 1% antibiotics/antimycotic solution
(penicillin/streptomycin, Life, USA) at 37°C and 5% CO2 in air. Twenty-four hours later, cells
were dislodged from digested tissue by repeated pipetting and were passed through 100 μm
sterile netting into sterile 50ml centrifuge tubes. The samples were centrifuged for 5 min at
1200 rpm, and the cell pellet was resuspended in DMEM, 20% FBS, 1% penicillin/streptomycin
to be plated in a 25 cm2 tissue flask at 37°C/5% CO2. Following 10 passages using limiting dilu-
tion, cell lines from each founder animal were characterized as mesenchymal origin (vimentin
positive) fibroblast-like cell lines and were frozen for use as a source of cells for experiments.
For activation, cells were grown to 80% confluency, medium changed to 5% FBS and AdCre or
AdGFP (Vector Biolabs, PA) was added at 200 to 400 MOI. Cells were incubated for 5 hrs at
37°C then replenished with fresh medium. AdCre and AdGFP cell lines were maintained sepa-
rately and each of the mesenchymal origin (vimentin positive), fibroblast-like cell lines were
used for assays and histological analyses. These fibroblast-like cell lines were passaged to
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senescence (pass 45 or less for non-transgenic and AdGFP treated transgenic cells) and the
AdCre treated transgenic lines have been passaged to 95 passes or greater.

Genotyping assay
DNA and RNA were isolated from cultured cells using the AllPrep DNA/RNAMini Kit (Qia-
gen, USA). Total RNA (1 μg) was reverse transcribed into cDNA in a 20 μl reaction mixture
using an Omniscript RT kit (Qiagen, USA) and 1 μl was used in a 25 μl PCR mixture of Hot-
StarTaq Plus DNA Polymerase kit (Qiagen, USA). Primers used for amplification of TP53 were
5’-TGGCTCTCCTCAAGCGTATT-3’ and 5’-ATTTTCATCCAGCCAGTTCG-3’. Primers
used for amplification of KRAS were 5’-TTGTACAGCTAGCTGCTGAAAATGACTGAATAT-
3’ and 5’-ATTCTCGAGCGGTTACATAATTATACAC-3’. Primers used for amplification of
CAG were 5’-TCATATGCCAAGTACGCCCC-3’ and 5’-CCCCATCGCTGCACAAAATA-3’.
PCR amplification was performed by 30 cycles of 94°C for 1 min, 94°C for 30 sec, 60°C for 1
min (KRASG12D and CAG) or 58°C for 1 min (TP53R167H), followed by a final incubation of
72°C for 10 min. The same primers and conditions described above were used for the
ACTB control.

Cell proliferation assay
Following the Cell Trace CFSE Cell Proliferatoin Kit (Molecular Probes) protocol, each cell
line was trypsinized, washed, and resuspended in single cell suspension at 1×106 cells per ml in
PBS, 0.1% BSA. The CFSE dye (CAS number 150347-59-4) was added to a final working con-
centration of 10 μM. The cells were incubated for 10 min at 37°C followed by quenching with 5
volumes of ice old culture media pelleting and then three washes with fresh media. An aliquot
of cells were analyzed by flow cytometry (BD LrsII) with 488 nm excitation and fluorescein
emission filters. The remaining cells were plated in wells. At each time point of analysis, cells
were trypsinized, washed, and resuspended for flow cytometry analysis. Average Mean fluores-
cent units (MFU) were recorded and analyzed.

Cell migration analysis
The ability of cells to migrate in monolayer cultures was assessed by a scratch wound assay
[28]. The Ibidi Culture-Insert (Ibidi, Verona, WI) was used with confluent cell cultures. The
distance and quantity of cell migration into the cell-free zone was evaluated on a digital camera
attached to an inverted microscope at 0, 12 and 24 hrs (Carl Zeiss Microscopy, LLC, United
States). The recorded images were analyzed using AxioVision Microscope software (Carl Zeiss
Microscopy, LLC, United States). The data were expressed as the mean ± SEM and the experi-
ment was run in triplicate.

Growth in soft agar analysis
Growth of fibroblast cells treated with AdGFP or AdCre in soft agar was performed as previ-
ously described [6] with minor modifications. Specifically, 2×104 cells were in DMEM plus
10% calf serum in 0.33% (w/v) noble agar were plated above 0.5% noble agar. Cells were fed
weekly by the addition of DMEM (200 μl) supplemented with 10% calf serum. After 2 wks col-
onies were scored by counting under a microscope and AxioVision software was used to count
the colonies.
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Xenograft tumorigenesis assay
Under an approved protocol by the University of Illinois Institutional Animal Care and Use
Committees (IACUC), 5x106 cells were mixed with Matrigel (BD Biosciences, San Diego, CA,
USA) and injected subcutaneously into the flanks of 3 to 4 severe combined immunodeficient
female mice (NOD.CB17-Prkdcscid/ JAX, Bar Harbor, ME) per cell line. Each mouse was in-
jected with the same cell line, the control AdGFP treated cells into the left flank and the AdCre
treated cells into the right flank. Calipers were used to measure the tumors approximately 3
times per week. Tumor volumes were calculated using the equation 1/2 length2 x width in the
unit of mm3. At the termination of the growth study all animals were euthanized and tumor tis-
sue collected for molecular analysis and histopathology.

AdCre induction of tumors in pigs
All animal studies and procedures were approved by the University of Illinois IACUC. Trans-
genic clone 63–3 was selected as the sire line for producing pigs for further in vivo studies.
Clone 63–3 was chosen based on fertility as well as having a single transgene integration site on
SSC18. Three 5-week old transgenic piglet offspring resulting by breeding clone 63–3 with a
domestic dam were anesthetized (TKX, 1 ml/50 lbs) and injected. A volume of 0.5 or 1.0 ml of
AdCre or AdGFP precipitate was injected subcutaneously (SQ), intratesticularly (IT) or intra-
muscularly (IM) using a 21 gauge needle. The precipitate was made as previously described
[29]. In short, Ad5CMVCre-eGFP (AdCre) or Ad5CMV-eGFP (AdGFP, Gene Transfer Vector
Core, University of Iowa) was diluted with minimal essential medium (MEM, GIBCO) to a
final concentration of 2×109 PFU/ml and 2 M Calcium chloride (to 0.01M final concentration)
was added, mixed, and allowed to incubate at room temperature for 15 min prior to injection.
All injections were completed before 45 min of incubation and were monitored daily and ultra-
sound imaging done on day 10 post injection.

Immunocytochemistry (IHC)
Histological sections of tumor tissues were analyzed following H&E staining and additional
immunostaining on selected sections to determine cell origins. IHC was performed on 4 μm
slides of formalin-fixed and paraffin-embedded tumor tissue specimens. The sections were
deparaffinized with changes of xylenes and graded ethanols to water. Antigen retrieval was per-
formed in a Decloaking Chamber (Biocare) with Diva DeCloaker solution (Biocare Medical,
DV 2004). Staining procedures were performed on a Biocare IntelliPath autostainer. Blocking
was performed using Peroxidazed 1 (PX968, Biocare Medical) for 5 min, and Background Pun-
isher (BP974, Biocare Medical) for 10 min. Sections were then incubated for 30 min at room
temperature with a prediluted monoclonal antibody (Vimentin, SM Actin, MS Actin or Cyto-
keratin; Biocare Medical). Secondary antibody, mouse on canine polymer (Biocare Medical,
MC541) was applied for 30 min. Finally, the chromagen, diaminobenzidine (DAB) was incu-
bated for 5 min (IP FLX DAB, IPK5010, Biocare Medical) and followed by hematoxylin coun-
terstain (CATHE, Biocare Medical) for 2 min. Negative controls were obtained by replacing
the primary antibody with Polymer negative control serum (Biocare Medical, NC499) for
30 min.

RNA isolation
Total RNA was extracted from frozen tissue samples using the AllPrep DNA/RNAMini Kit
(Qiagen, Valencia, CA, USA) following the manufacturer’s protocol. RNA concentrations were
determined using a NanoDrop spectrophotometer and analyzed by an Agilent 2100
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Bioanalyzer using an RNA Nano bioanalyzer chip to determine RNA integrity as well as the
presence/absence of gDNA by the Carver High-Throughput DNA Sequencing and Genotyping
Unit (HTS lab, University of Illinois, Urbana, IL, USA). Only RNA samples with a RNA integ-
rity number (RIN) greater than 7 were used for sequencing.

RNA-seq library preparation
High-quality RNA (1μg) was used to generate TruSeq Stranded RNA-seq libraries (TruSeq
Stranded RNA Sample Preparation Kit, Illumina, San Diego, CA, USA) following standard
protocols. Briefly, messenger RNA was isolated from the high quality DNAse treated total
RNA and first-strand synthesis performed with a random hexamer and SuperScript II (Life
Technologies, Carlsbad, CA, USA). Second-strand synthesis was performed using dUTP in-
stead of dTTP. Double stranded DNA was blunt-ended, 3’-end A-tailed and ligated to indexed
adaptors. The adaptor–ligated double-stranded cDNA was amplified by PCR for 10 cycles with
the Kapa HiFi polymerase (Kapa Biosystems, Woburn, MA, USA) to reduce the likeliness of
multiple identical reads due to preferential amplification. The final libraries were quantified
using Qubit (Life Technologies, Carlsbad, CA, USA) and the average size was determined on
an Agilent bioanalyzer DNA7500 DNA chip (Agilent Technologies, Wilmington, DE, USA)
and diluted to 10 nM. The 10 nM dilution was further quantitated by qPCR on an ABI 1900 to
ensure high accuracy quantification for consistent pooling of barcoded libraries and maximiza-
tion of the number of clusters in the Illumina flowcell.

RNA-seq sequencing
RNA-seq Illumina sequencing was performed on libraries multiplexed and loaded onto 8-lane
flowcells for cluster formation and sequenced on an Illumina HiSeq2000. The libraries were se-
quenced to a total read length of 100 bp from both ends (paired-end sequencing) of the mole-
cules. The run generated. bcl files which were converted into demultiplexed compressed fastq
files using Casava 1.8.2 (Illumina, San Diego, CA, USA).

RNA-Seq data analysis
An average of 70 million raw stranded paired-end reads were produced for each sample, rang-
ing from 54.6 to 84.7 million. Raw reads were trimmed sequentially for adapter contamination,
A-tails, and minimum quality score (20) and minimum length (20 bp) using Trim Galore
v.0.3.3 (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Unpaired reads
were retained with a minimum length of 35 bp. Trimmed paired and unpaired reads were
aligned to the swine reference genome using Tophat v.2.2.10 [30]. Tophat analysis included a
pre-alignment to the reference genome to filter out reads extending the maximum number of
alignments (-M option) followed by alignment to the Ensembl swine reference transcriptome
(-G) and alignment to the genome. The number of allowed alignment hits (-g option) was 20.
Furthermore the–read-realign-edit-dist option was set to 0, the–mate-inner-dist option to 120,
the–mate-std-dev option to 260 and included the fr-firststrand option. Aligned bam files were
assessed for differential gene expression using cufflinks v.2.2.1 [31]. First cufflinks was used to
assemble transcripts for each sample using the fr-firststrand option, followed by Cuffmerge to
merge the assembled transcripts from all samples with the reference transcripts. Cuffquant was
used to pre-compute gene expression levels for each sample using the–u option, which more
accurately weights reads mapping to multiple locations, and the fr-firststrand option. Finally,
Cuffnorm was used to produce gene expression levels normalized for library size by setting
the–library-norm-method to geometric and including the fr-firststrand option. Samtools mpi-
leup [32,33] was used to identify the ratio of WT and mutant TP53 and KRAS gene expression
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based on the reads overlapping the mutation site. RNA-seq data are available in the ArrayEx-
press database (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-3382.

Identification of transgene insertion site
Genomic DNA was isolated from the 63–3 cell line and used for genome walking (Universal
GenomeWalker Kit; Clontech, Mountain View, CA). Briefly, four pools of adaptor-ligated ge-
nomic DNA were produced by restriction digestion and subsequent ligation with a single uni-
versal adaptor according to the manufacturer’s recommendation. Two sets of nested
oligonucleotide primers were designed corresponding to opposite ends of the transgene con-
struct and were oriented for the amplification of flanking genomic DNA (i.e., primers were de-
signed from the minus strand for the 5’ end of the construct and plus strand for the 3’ end of
the construct). An initial PCR amplification was performed using the innermost primers corre-
sponding to each of the construct ends and a primer directed at universal adapter sequence.
First round amplicons were used as template for a second round of amplification with the ap-
propriate nested primer sets. PCR products were separated on a 1.2% agarose gel; bands of in-
terest were extracted and purified using NucleoSpin Gel and PCR Clean-up kit (Clontech) and
then sequenced. Genomic sequences were mapped to the pig genome using BLAST [34]
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