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BRCA1 is a breast and ovarian tumor suppressor. Hereditary mutations in BRCA1

result in a predisposition to breast cancer, and BRCA1 expression is down-regulated

in ∼30% of sporadic cases. The function of BRCA1 remains poorly understood, but

it appears to play an important role in DNA repair and the maintenance of genetic

stability. Mouse models of BRCA1 deficiency have been developed in an attempt to

understand the role of the gene in vivo. However, the subtle nature of BRCA1 function

and the well-known discrepancies between human and murine breast cancer biology

and genetics may limit the utility of mouse systems in defining the function of BRCA1 in

cancer and validating the development of novel therapeutics for breast cancer. In contrast

to mice, pig biological systems, and cancer genetics appear to more closely resemble

their human counterparts. To determine if BRCA1 inactivation in pig cells promotes their

transformation and may serve as a model for the human disease, we developed an

immortalized porcine breast cell line and stably inactivated BRCA1 using miRNA. The cell

line developed characteristics of breast cancer stem cells and exhibited a transformed

phenotype. These results validate the concept of using pigs as a model to study BRCA1

defects in breast cancer and establish the first porcine breast tumor cell line.
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Introduction

Breast cancer is a leading cause of death in women and is one of the most common cancers in the
world today. Up to 40,000 women are expected to die of breast cancer annually in the US alone
(Siegel et al., 2011). The underlying causes of breast cancer development remain very much under
investigation, but we now know that the BRCA1 tumor suppressor gene plays an important role in
many breast cancers. Women who carry a BRCA1 germ line mutation have a cumulative lifetime
risk of 50–85% of developing breast cancer (King et al., 2003). Although somatic BRCA1mutations
are rare in sporadic breast cancer, BRCA1 expression is down-regulated in∼30% of sporadic cases
by allele loss or epigenetic mechanisms (Welcsh and King, 2001; Yang et al., 2001).

The function of BRCA1 remains poorly understood. It has a ubiquitin ligase activity and can
control the stability/activity of proteins such as Claspin (Sato et al., 2012) and estrogen receptor
alpha (Savage and Harkin, 2015). It is also a key player in modulating DNA repair (Zhang and
Powell), replication fork stability (Pathania et al., 2011), senescence (Tu et al., 2013), oxidative
stress (Marks, 2013), genomic stability (Savage and Harkin, 2015), and checkpoint induced cell
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cycle arrest (Huen et al., 2010). The complex role of BRCA1 in
cellular homeostasis has made elucidating its key functions in
cancer difficult.

Mouse models of BRCA1 deficiency have been developed
in an attempt to understand the role of the gene in vivo (Ma
et al., 2010). Although BRCA1 knockout provokes embryonic
lethality in mice, conditional knockout of BRCA1 in breast tissue
leads to tumor development after a long latency. The latency
period can be strongly reduced by introducing defects in the p53
tumor suppressor to the animal system. These animal models
have allowed the validation of therapies designed against BRCA1
defective tumors. However, even therapeutic approaches that
were effective resulted in the emergence of resistant tumors (Ma
et al., 2010). Further studies to examine approaches to overcome
the resistance are limited by the short lifespan of the mice.
Moreover, the subtle nature of BRCA1 function and the well-
known discrepancies between human and murine breast biology
(Dine and Deng, 2013) and cancer genetics (Kendall et al., 2005)
may limit the utility of mouse systems in defining the function of
BRCA1 in human cancer.

In contrast to mice, pigs exhibit very similar cancer genetics
to humans (Adam et al., 2007). Moreover, their physiology and
biochemistry is similar (Swindle et al., 2012) and their lifespan
extends for decades. Consequently, a porcine model for breast
cancer could prove a powerful tool for validating breast cancer
therapies, preventative strategies and the clinical response to the
emergence of drug resistance.

In order to validate the use of porcine systems in breast cancer
research, we generated an immortalized porcine breast cell line
using the SV40 LT oncoprotein (Chen and Hahn, 2003). We
then used BRCA1 miRNA to generate a stable matched pair of
cell lines that are positive or negative for BRCA1 expression.
Characterization of the cells showed that BRCA1 knockdown
induced enhanced growth and induced a transformed phenotype
on the cells. Moreover, the transformed cells expressed markers
characteristic of cancer stem cells. These results establish the first
porcine breast cancer cell line and validate the concept of using
porcine systems as a model to study BRCA1 defects in breast
cancer.

Materials and Methods

Porcine Cell Lines and Transfections
Primary porcine breast epithelia cells were isolated as described
in Prather et al. (1999) using a protocol approved by the IACUC
of the University of Missouri-Columbia, Columbia, Missouri.
They were transfected with pbabe puro SV40LT (Addgene
#13970) using Lipofectamine 2000 (Invitrogen, Carlsbad CA)
according to the manufacturer’s instructions. Cells were selected
in puromycin (Sigma, St Louis, MO) at 1µg/ml. miRNA
sequences corresponding to two different regions of porcine
BRCA1 were designed using the Block-iT™ RNAi Designer
(Invitrogen). Two single-stranded DNA oligonucleotides were
designed for each sequence, one encoding the target pre-miRNA
(top strand) and the other, its compliment (bottom). Each
oligonucleotide also contained five nucleotides (TGCTG)
derived from the endogenous miR-155 at the 5′ end and 19

nucleotides derived from miR-155 to form a terminal loop. The
sequences of the two different oligo sets are as follows: #1 Top:
5′-TGCTGATTGTTTGCAAACTGCAATCCGTTTTGGCCAC
TGACTGACGGATTGCATTGCAAACAAT-3′, #1 Bottom: 5′-C
CTGATTGTTTGCAATGCAATCCGTCAGTCAGTGGCCAA
AACGGATTGCAGTTTGCAAACAATC-3′; #2 Top: TGCTG
TATTAAAGCACCATGAGGGTCGTTTTGGCCACTGACTG
ACGACCCTCAGTGCTTTAATA-3′; #2 Bottom: 5′-CCTGTAT
TAAAGCACTGAGGGTCGTCAGTCAGTGGCCAAAACGA
CCCTCATGGTGCTTTAATAC-3′.

The corresponding single-stranded oligos were annealed to
generate a double-stranded oligo which was then cloned into the
pcDNA™ 6.2-GW/EmGFP-miR vector (Invitrogen). Generation
of the double-stranded oligos and cloning into the expression
vector were performed using the BLOCK-iT™ Pol II miR
RNAi Expression Vector Kit (Invitrogen) as described by the
manufacturer. Stable transfectants were generated by transfecting
the transformed pig mammary epithelial cells with 2µg of the
two different miRNA expression vectors, as well as a negative
control consisting of amiRNA to LacZ, using Lipofectamine 2000
according to the manufacturer’s instructions and selecting with
Blasticidin (4µg/ml).

qRT-PCR
qRT-PCR was performed on total RNA isolated from the cells
with Trizol using an iCycler Real-Time Detection System (Bio-
Rad Laboratories, Inc., Hercules, CA) with the Quantitect SYBR
Green RT-PCR Kit (Qiagen, Inc., Valencia, CA) as per the
manufacturer’s instructions. The fold change for each gene was
calculated using the 2−11CT method (Livak and Schmittgen,
2001) with GAPDH as the reference gene. The primers
used were BRCA1 For: 5′-GTCCAAAGCGAGCAAGAGAA -3′,
BRCA1 Rev: 5′- ACAGAAGCCCCACAGAGGA -3′; GAPDH
For: 5′- CGATGCTGGTGCTGAGTATG- 3′, GAPDH Rev: 5′-
GAAGGGGCAGAGATGATGAC- 3′.

Western Blots
Total cell lysates were prepared by lysing the cells in
modified RIPA buffer (150mM NaCl, 50mM Tris, pH 7.5,
1% NP-40) supplemented with 100µg/ml leupeptin, 100µg/ml
aprotinin and 1mM sodium orthovanadate. BRCA1 and ALDH1
antibodies were obtained from Santa Cruz Biotechnology, Santa
Cruz, CA., Actin antibodies were from Sigma (St. Louis MO)
and EpCAM antibodies were from AbCam. HRP conjugated
Trueblot secondary antibodies were purchased from eBioscience
(eBioscience Inc. San Diego, CA) and western blots were
developed using a Pierce ECL detection system (Thermo
Scientific, Rockford IL).

Growth Curves
2× 104 cells/well were plated in six-well plates in normal growth
medium and incubated for 6 days. Cell number was determined
each day by counting the number of viable cells. Experiments
were performed twice in duplicate.

Matrigel
Fifty micro liters of Matrigel (BD Biosciences, San Jose, CA) was
plated in a 96 well plate and allowed to set. Cells were trypsinized,
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washed in growth medium and plated at 5000 cells per well in
100µl of growth medium. Hundred micro liters of medium+4%
Matrigel was added and the medium changed every 4 days.

Soft Agar
Six well plates were prepared with 2ml bottom agar (16ml 1.8%
molten Difco Bacto agar cooled to 42◦C and mixed with 1.6ml
serum, 1.6ml 10X PBS and mixed with 30.3ml DMEM) and
allowed to set. Cells were trypsinized, washed, and 3 × 104 cells
suspended in 1.5ml growth medium. Three milli liters of liquid
bottom agar was added to the cell dilution and 1.5ml aliquoted
into each well to set.

Anoikis
Twelve well plates were treated with polyHEMA (Sigma) and
allowed to dry overnight. 1 × 106 cells were plated in each well
and the cell viability measured after 48 h by trypan blue exclusion.

Results

Generation of an Immortalized Porcine Epithelial
Cell Line
Primary pig breast epithelial cells were isolated as described
previously (Prather et al., 1999) and transfected with an SV40
LT expression vector. Transfected cells were isolated by selection
in puromycin and surviving colonies pooled. As the cells were
passaged, the SV40 LT transfected cells lost the senescent
morphology apparent in the parental cells (Figure 1). They
were then serially passaged to determine if they had been
immortalized. Transfected cells have been passaged more than
26 times without apparent loss of viability. In contrast, parental
cultures lose proliferative capacity by passage 8.

Identification of an Effective Porcine BRCA1
miRNA
The Block-iT™ RNAi Designer tool from Invitrogen was
used to identify potentially effective miRNA sequences against
porcine BRCA1. Two were generated and cloned into the
vector pcDNA GW 6.2 EmGFPmiRNA. The vectors were then
transiently transfected into the immortalized breast epithelial
cells and assayed for the degree of knockdown by RT-PCR.
Only one of the miRNAs proved effective (Figure 2A). This

FIGURE 1 | Immortalization of pig mammary epithelial cells. Primary pig

breast epithelial cells were stably transfected with an SV40 LT expression

construct and selected in puromycin. Surviving cells were serially passaged to

confirm immortalization.

miRNA and the empty vector were stably transfected into the
immortalized pig breast cells to generate a matched pair+/− for
BRCA1. Western analysis confirmed that the miRNA transfected
cells had almost completely lost BRCA1 protein expression
(Figure 2B).

Suppression of BRCA1 Enhances Porcine
Epithelial Cell Growth
As the cells were passaged, the BRCA1 suppressed cells
progressively adopted a noticeably different morphology than the
vector control cell line (Figure 3A). To characterize the effect
of the BRCA1 suppression on the cell cycle, we measured the
relative growth of the matched pair of cell lines transfected with
vector or miBRCA1. Cells were plated and counted every day
for 1 week. The BRCA1 suppressed cells exhibited an enhanced
growth rate (Figure 3B).

Suppression of BRCA1 Alters Differentiation
Non-transformed human breast epithelial cell lines can be
induced to differentiate into acini with hollow lumens when
plated in 3D in matrigel. This differentiation is thought to mimic
the process that occurs during the development of breast ducts.
The process is disrupted by suppression of BRCA1 (Furuta
et al., 2005). To examine the loss of BRCA1 in porcine cells
on this process, we plated the BRCA1+/− matched cell lines
in matrigel for 10 days. After 10 days, the immortalized cells
transfected with vector alone formed acini, reminiscent of human
immortalized breast cells. The BRCA1 knockdown cells mostly
grew as disordered masses (Figure 4).

Suppression of BRCA1 Promotes Transformation
The BRCA1 knockdown appeared to have induced enhanced
growth and reduced differentiation (Figures 3, 4). In order

FIGURE 2 | miRNA-mediated BRCA1 knockdown in the immortalized

pig mammary epithelial cells. (A) The immortalized pig breast epithelial cells

were transiently transfected with expression constructs for two BRCA1

miRNAs and a LacZ control. Forty-eight hours later, BRCA1 mRNA levels were

determined by qRT-PCR analysis. (B) The immortalized pig mammary

epithelial cells were transfected with BRCA1 miRNA#1 or the miLacZ control

and selected with blasticidin to obtain cells that were stably knocked down for

BRCA1. Western blot analysis confirmed efficient knockdown. β-actin served

as control for equal protein loading. Error bars show standard error, p < 0.05

for miRNA#1, mRNA #2 was not significant.

Frontiers in Genetics | www.frontiersin.org 3 August 2015 | Volume 6 | Article 269

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Donninger et al. BRCA1 and porcine breast cancer

FIGURE 3 | Loss of BRCA1 enhances pig mammary

epithelial cell growth. (A) Serially passaging the pig

mammary epithelial cells stably knocked down for BRCA1

resulted in an altered morphology compared to those cells

stably expressing the LacZ miRNA. (B) 2× 104 cells/well were

plated in 6-well plates and cell growth was determined by

counting the number of cells at the indicated times. Error

bars show standard error, p < 0.05.

FIGURE 4 | Loss of BRCA1 inhibits acini formation. The −/+ BRCA1 pig

mammary epithelial cells were plated in matrigel and allowed to grow for 10

days. Control cells formed acinus-like structures after 3D growth whereas the

cells stably expressing BRCA1 miRNA grew as disordered masses. Error bars

show standard error, p < 0.05.

to determine if it was sufficient to induce the tumorigenic
phenotype, we plated the cells in soft agar and counted colony
formation after 14 days. Anchorage-independent growth is one
of the hallmarks of cell transformation and is considered the
most accurate and stringent in vitro assay for detecting malignant
transformation of cells (Colburn et al., 1978). Figure 5A

shows that the BRCA1 positive cells failed to form colonies
in agar. In contrast, the BRCA1 knockdown cells formed
numerous, large colonies, indicative of highly transformed
cells.

Suspension of normal cells results in the induction of
apoptosis, a process called anoikis. Transformed cells typically
resist anoikis, and this may contribute to their ability to
proliferate when suspended in soft agar (Guadamillas et al.,
2011). Examination of the ability of the cells to survive
suspension showed that the BRCA1 knockdown cells were
resistant (Figure 5B).

FIGURE 5 | Loss of BRCA1 enhances the transformed phenotype of pig

mammary epithelial cells. (A) The pig breast epithelial cells stably

expressing BRCA1 miRNA were plated in soft agar and scored for growth 14

days later. Representative photomicrographs are shown in the top panel and

data from three independent experiments quantitated in the bar graph in the

lower panel. (B) 1× 106 cells/well were plated in polyHEMA-coated 12-well

plates and cell viability assessed 48 h later by trypan blue staining. Error bars

show standard error, p < 0.05.

BRCA1 Knockdown Promotes a CSC Phenotype
In primary breast cells, knockdown of BRCA1 blocks the
differentiation of stem/progenitor cells and enhances their
proliferation (Furuta et al., 2005; Ma et al., 2010). Moreover, the
ability to grow in soft agar is typically associated with the cancer
stem cell (CSC) population of a transformed culture (Colburn
et al., 1978). To determine if the knockdown of BRCA1 had
promoted the development of CSC phenotype, we performed
Western analysis for the expression of the CSC markers EpCAM
(Dawood et al., 2014) as well as ALDH1 (Moreb, 2008). We
found that in the BRCA1 knockdown cells, the EpCAM CSC
marker was massively upregulated, and ALDH1 was upregulated
three-fold (Figure 6). Actin served as a loading control. In these
experiments, we had included miRNA against a second tumor
suppressor, RASSF1A (Donninger et al., 2007), as an additional
negative control. Whereas, the RASSF1AmiRNA had no obvious
effect on EpCAM, it did upregulate ALDH1, although less than
the miBRCA1. Thus, RASSF1A may also be involved, to some
extent, in CSC regulation.
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FIGURE 6 | BRCA1 knockdown in pig mammary epithelial cells alters

CSC marker expression. Equal amounts of protein lysates from control and

BRCA1 knockdown cells were fractionated on SDS polyacrylamide gels and

western blotted with an anti-EpCAM antibody and an ALDH1 antibody. β-actin

was used a protein loading control. Mi_lacZ and a non BRCA1 miRNA

transfected cell line (mi_RASSF1A) served as negative control cell lines.

Discussion

Women who carry a BRCA1 germ line mutation have a
cumulative lifetime risk of 50–85% of developing breast cancer
(King et al., 2003). Although somatic BRCA1 mutations are rare
in sporadic breast cancer, BRCA1 expression is down regulated
in ∼30% of sporadic cases (Yang et al., 2001). Its mode of action
appears complex, subtle and remains only partially understood.
It has been shown to modulate DNA repair, DNA damage
checkpoints, stability of Claspin and Estrogen receptor alpha, and
to modulate cell adhesion and motility (Wang, 2012; Christou
and Kyriacou, 2013). Its loss of function in human cells is thought
to promote genetic instability, hence leading to the development
of cancer. It has been shown to synergize with the p53 tumor
suppressor in mouse models and human cell tissue culture
experiments (Brodie and Deng, 2001; Hartman and Ford, 2003).

Although mouse model systems have proven to be powerful
tools in the investigation of the nature of cancer in vivo, they
suffer from a major drawback. Murine cancer genetics is much
simpler than that of humans. Murine cells are much easier
to transform than human cell systems. Whereas, human cells
require at least five genetic lesions to convert from a normal cell
to a tumor cell, mouse cells can be induced to transform by just
two oncogenic lesions (Rangarajan et al., 2004; Kendall et al.,
2005). Thus, mouse models may prove inaccurate when trying to
model human cancer. In contrast, porcine cancer genetics is very
similar to human cells. Pig cells require five or more oncogenic
mutations to undergo transformation, much like humans (Adam
et al., 2007). Thus, a pig cancer model is more likely to accurately
reflect the human condition.

Nothing is known about the role of BRCA1 in porcine cells
and whether its ablation phenocopies the human state. Here,

we have attempted to address the issue by generating the first
immortalized porcine breast cell line by introducing an SV40 LT
expression plasmid into primary breast cells derived from a pig.
SV40 LT can immortalize human cells impairing the function of
both the p53 and the Rb tumor suppressors (Ahuja et al., 2005).
In experimental human cell systems, SV40 LT transduction has
been shown to promote a transcriptional fingerprint which is
quite reminiscent of that observed in triple negative breast cancer
primary tumors (Deeb et al., 2007), suggesting the lesion is a
relevant model. We found that it is also effective in a porcine
system. We then examined the effects of inactivating BRCA1 in
the immortalized cells.

To knockdown BRCA1, we used a stable miRNA expression
approach. Although we assayed two different miRNA sequences,
only one was really effective as measured by qRT-PCR,
and so this is the sequence we used in the experiments.
Subsequent examination of BRCA1 protein levels by Western
blot showed that thismiRNA rendered the BRCA1 protein almost
undetectable. The knockdown of BRCA1 in a background where
SV40LT has impaired p53 and Rb function was sufficient to
promote enhanced growth and a dramatic transformation of
the cells, as measured by colony formation in soft agar. Thus,
we have created the first porcine breast epithelial tumor cell
line.

BRCA1 down-regulation has been implicated in the
development of a cancer stem cell-like phenotype in breast
cells (Liu et al., 2008). In vitro, it appears that it is the CSC
population that provides the ability to form colonies in soft agar
(Colburn et al., 1978). When we examined the cells we found that
the inactivation of BRCA1 in the SV40 LT background induced
the upregulation of the CSC markers EpCAM (Munz et al., 2009)
and ALDH1 (Moreb, 2008). This suggests that breast cancer
CSC in humans and pigs are regulated in a similar manner by
BRCA1.

This work establishes the first porcine model system for
studying BRCA1 and breast cancer. It validates the concept
that porcine transgenic animal models may be valuable for the
study of human breast cancer and the development of novel
therapeutics for the treatment of breast cancer driven by BRCA1
defects. In particular, due to the human-like life span of pigs, a
porcine model of BRCA1 driven breast cancer could allow the
testing of long term preventative measures, as well as strategies
to counter the persistence of minimal residual disease after
treatment. Attempts have been previously made to develop such
an animal (Luo et al., 2011). Unfortunately, no animal’s survived
BRCA1 knockout long enough to determine any biological effects
on breast cancer. These experiments suggest that a future porcine
BRCA1 system would need to involve a tissue specific knockout,
as has been the case in transgenic mouse systems.

Acknowledgments

Work was funded by NIH 1R01CA153132-01 to GC and NSRRC
2U242ODO11140 to EW.

Frontiers in Genetics | www.frontiersin.org 5 August 2015 | Volume 6 | Article 269

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Donninger et al. BRCA1 and porcine breast cancer

References

Adam, S. J., Rund, L. A., Kuzmuk, K. N., Zachary, J. F., Schook, L. B., and

Counter, C. M. (2007). Genetic induction of tumorigenesis in swine. Oncogene

26, 1038–1045. doi: 10.1038/sj.onc.1209892

Ahuja, D., Sáenz-Robles, M. T., and Pipas, J. M. (2005). SV40 large T antigen

targets multiple cellular pathways to elicit cellular transformation. Oncogene

24, 7729–7745. doi: 10.1038/sj.onc.1209046

Brodie, S. G., and Deng, C. X. (2001). BRCA1-associated tumorigenesis: what

have we learned from knockout mice? Trends Genet. 17, S18–S22. doi:

10.1016/S0168-9525(01)02451-9

Chen, W., and Hahn, W. C. (2003). SV40 early region oncoproteins and human

cell transformation. Histol. Histopathol. 18, 541–550.

Christou, C. M., and Kyriacou, K. (2013). BRCA1 and its network of interacting

partners. Biology (Basel) 2, 40–63. doi: 10.3390/biology2010040

Colburn, N. H., Bruegge, W. F., Bates, J. R., Gray, R. H., Rossen, J. D., Kelsey,

W. H., et al. (1978). Correlation of anchorage-independent growth with

tumorigenicity of chemically transformed mouse epidermal cells. Cancer Res.

38, 624–634.

Dawood, S., Austin, L., and Cristofanilli, M. (2014). Cancer stem cells: implications

for cancer therapy. Oncology (Williston Park) 28, 1101–1107, 1110.

Deeb, K. K., Michalowska, A. M., Yoon, C. Y., Krummey, S. M., Hoenerhoff, M. J.,

Kavanaugh, C., et al. (2007). Identification of an integrated SV40 T/t-antigen

cancer signature in aggressive human breast, prostate, and lung carcinomas

with poor prognosis. Cancer Res. 67, 8065–8080. doi: 10.1158/0008-5472.CAN-

07-1515

Dine, J., and Deng, C. X. (2013). Mouse models of BRCA1 and their application to

breast cancer research. Cancer Metastasis Rev. 32, 25–37. doi: 10.1007/s10555-

012-9403-7

Donninger, H., Vos, M. D., and Clark, G. J. (2007). The RASSF1A tumor

suppressor. J. Cell Sci. 120, 3163–3172. doi: 10.1242/jcs.010389

Furuta, S., Jiang, X., Gu, B., Cheng, E., Chen, P. L., and Lee, W. H. (2005).

Depletion of BRCA1 impairs differentiation but enhances proliferation of

mammary epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 102, 9176–9181. doi:

10.1073/pnas.0503793102

Guadamillas, M. C., Cerezo, A., and Del Pozo, M. A. (2011). Overcoming

anoikis–pathways to anchorage-independent growth in cancer. J. Cell Sci. 124,

3189–3197. doi: 10.1242/jcs.072165

Hartman, A. R., and Ford, J. M. (2003). BRCA1 and p53: compensatory roles in

DNA repair. J. Mol. Med. 81, 700–707. doi: 10.1007/s00109-003-0477-0

Huen, M. S., Sy, S. M., and Chen, J. (2010). BRCA1 and its toolbox for the

maintenance of genome integrity. Nat. Rev. Mol. Cell Biol. 11, 138–148. doi:

10.1038/nrm2831

Kendall, S. D., Linardic, C.M., Adam, S. J., and Counter, C.M. (2005). A network of

genetic events sufficient to convert normal human cells to a tumorigenic state.

Cancer Res. 65, 9824–9828. doi: 10.1158/0008-5472.CAN-05-1543

King, M. C., Marks, J. H., andMandell, J. B. (2003). Breast and ovarian cancer risks

due to inherited mutations in BRCA1 and BRCA2. Science 302, 643–646. doi:

10.1126/science.1088759

Liu, S., Ginestier, C., Charafe-Jauffret, E., Foco, H., Kleer, C. G., Merajver, S.

D., et al. (2008). BRCA1 regulates human mammary stem/progenitor cell

fate. Proc. Natl. Acad. Sci. U.S.A. 105, 1680–1685. doi: 10.1073/pnas.07116

13105

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression

data using real-time quantitative PCR and the 2−11CT method. Methods 25,

402–408. doi: 10.1006/meth.2001.1262

Luo, Y., Li, J., Liu, Y., Lin, L., Du, Y., Li, S., et al. (2011). High efficiency of BRCA1

knockout using rAAV-mediated gene targeting: developing a pig model for

breast cancer. Transgenic Res. 20, 975–988. doi: 10.1007/s11248-010-9472-8

Ma, Y., Fan, S., Hu, C., Meng, Q., Fuqua, S. A., Pestell, R. G., et al. (2010).

BRCA1 regulates acetylation and ubiquitination of estrogen receptor-alpha.

Mol. Endocrinol. 24, 76–90. doi: 10.1210/me.2009-0218

Marks, J. R. (2013). Refining the role of BRCA1 in combating oxidative stress.

Breast Cancer Res. 15, 320. doi: 10.1186/bcr3583

Moreb, J. S. (2008). Aldehyde dehydrogenase as a marker for stem cells. Curr. Stem

Cell Res. Ther. 3, 237–246. doi: 10.2174/157488808786734006

Munz, M., Baeuerle, P. A., and Gires, O. (2009). The emerging role of EpCAM in

cancer and stem cell signaling. Cancer Res. 69, 5627–5629. doi: 10.1158/0008-

5472.CAN-09-0654

Pathania, S., Nguyen, J., Hill, S. J., Scully, R., Adelmant, G. O., Marto, J. A., et al.

(2011). BRCA1 is required for postreplication repair after UV-induced DNA

damage.Mol. Cell 44, 235–251. doi: 10.1016/j.molcel.2011.09.002

Prather, R. S., Boquest, A. C., and Day, B. N. (1999). Cell cycle analysis of

cultured porcine mammary cells. Cloning 1, 17–24. doi: 10.1089/1520455995

0020067

Rangarajan, A., Hong, S. J., Gifford, A., and Weinberg, R. A. (2004). Species-

and cell type-specific requirements for cellular transformation. Cancer Cell 6,

171–183. doi: 10.1016/j.ccr.2004.07.009

Sato, K., Sundaramoorthy, E., Rajendra, E., Hattori, H., Jeyasekharan, A. D.,

Ayoub, N., et al. (2012). A DNA-damage selective role for BRCA1 E3 ligase

in claspin ubiquitylation, CHK1 activation, and DNA repair. Curr. Biol. 22,

1659–1666. doi: 10.1016/j.cub.2012.07.034

Savage, K. I., and Harkin, D. P. (2015). BRCA1, a ‘complex’ protein involved

in the maintenance of genomic stability. FEBS J. 282, 630–646. doi:

10.1111/febs.13150

Siegel, R., Ward, E., Brawley, O., and Jemal, A. (2011). Cancer statistics, 2011: the

impact of eliminating socioeconomic and racial disparities on premature cancer

deaths. CA Cancer J. Clin. 61, 212–236. doi: 10.3322/caac.20121

Swindle, M. M., Makin, A., Herron, A. J., Clubb, F. J. Jr., and Frazier, K. S. (2012).

Swine as models in biomedical research and toxicology testing. Vet. Pathol. 49,

344–356. doi: 10.1177/0300985811402846

Tu, Z., Zhuang, X., Yao, Y. G., and Zhang, R. (2013). BRG1 is required for

formation of senescence-associated heterochromatin foci induced by oncogenic

RAS or BRCA1 loss.Mol. Cell. Biol. 33, 1819–1829. doi: 10.1128/MCB.01744-12

Wang, B. (2012). BRCA1 tumor suppressor network: focusing on its tail. Cell

Biosci. 2:6. doi: 10.1186/2045-3701-2-6

Welcsh, P. L., and King, M. C. (2001). BRCA1 and BRCA2 and the

genetics of breast and ovarian cancer. Hum. Mol. Genet. 10, 705–713. doi:

10.1093/hmg/10.7.705

Yang, Q., Sakurai, T., Mori, I., Yoshimura, G., Nakamura, M., Nakamura,

Y., et al. (2001). Prognostic significance of BRCA1 expression

in Japanese sporadic breast carcinomas. Cancer 92, 54–60. doi:

10.1002/1097-0142(20010701)92:1<54::AID-CNCR1291>3.0.CO;2-8

Zhang, J., and Powell, S. N. (2005). The role of the BRCA1 tumor suppressor

in DNA double-strand break repair. Mol. Cancer Res. 3, 531–539. doi:

10.1158/1541-7786.MCR-05-0192

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Donninger, Hobbing, Schmidt, Walters, Rund, Schook and Clark.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Genetics | www.frontiersin.org 6 August 2015 | Volume 6 | Article 269

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive

	A porcine model system of BRCA1 driven breast cancer
	Introduction
	Materials and Methods
	Porcine Cell Lines and Transfections
	qRT-PCR
	Western Blots
	Growth Curves
	Matrigel
	Soft Agar
	Anoikis

	Results
	Generation of an Immortalized Porcine Epithelial Cell Line
	Identification of an Effective Porcine BRCA1 miRNA
	Suppression of BRCA1 Enhances Porcine Epithelial Cell Growth
	Suppression of BRCA1 Alters Differentiation
	Suppression of BRCA1 Promotes Transformation
	BRCA1 Knockdown Promotes a CSC Phenotype

	Discussion
	Acknowledgments
	References


