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Abstract
Background: Whole genome radiation hybrid (WG-RH) maps serve as "scaffolds" to significantly
improve the orientation of small bacterial artificial chromosome (BAC) contigs, order genes within
the contigs and assist assembly of a sequence-ready map for virtually any species. Here, we report
the construction of a porcine: human comparative map for pig (Sus scrofa) chromosome 10 (SSC10)
using the IMNpRH212,000-rad porcine WG-RH panel, integrated with the IMpRH7000-rad WG-RH,
genetic and BAC fingerprinted contig (FPC) maps.

Results: Map vectors from the IMNpRH212,000-rad and IMpRH7,000-rad panels were merged to
construct parallel framework (FW) maps, within which FW markers common to both panels have
an identical order. This strategy reduced map discrepancies between the two panels and
significantly improved map accuracy. A total of 216 markers, including 50 microsatellites (MSs), 97
genes and ESTs, and 69 BAC end sequences (BESs), were ordered within two linkage groups at two
point (2 pt) LOD score of 8. One linkage group covers SSC10p with accumulated map distances of
738.2 cR7,000 and 1814.5 cR12,000, respectively. The second group covers SSC10q at map distances
of 1336.9 cR7,000 and 3353.6 cR12,000, yielding an overall average map resolution of 16.4 kb/cR12,000
or 393.5 kb per marker on SSC10. This represents a ~2.5-fold increase in map resolution over the
IMpRH7,000-rad panel. Based on 127 porcine markers that have homologous sequences in the human
genome, a detailed comparative map between SSC10 and human (Homo sapiens) chromosome
(HSA) 1, 9 and 10 was built.

Conclusion: This initial comparative RH map of SSC10 refines the syntenic regions between
SSC10 and HSA1, 9 and 10. It integrates the IMNpRH212,000-rad and IMpRH7,000-rad, genetic and BAC
FPC maps and provides a scaffold to close potential gaps between contigs prior to genome
sequencing and assembly. This map is also useful in fine mapping of QTLs on SSC10.
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Background
Radiation hybrid (RH) mapping is an important tool in
the construction of high-resolution physical maps, which
are key to efficient sequencing and successful genome
sequence assembly [1-5] and the construction of compar-
ative maps between species [6-8]. A major advantage of
RH mapping is that polymorphic and nonpolymorphic
markers, including sequence tagged-sites (STSs), microsat-
ellites (MSs), genes, expressed sequence tags (ESTs), bac-
terial artificial chromosome (BAC) end sequences (BESs)
and single nucleotide polymorphisms (SNPs) can be
ordered at high resolution. Although several RH panels
are currently available for swine [1,9-14], to date, the
IMNpRH212,000-rad panel [1] offers the highest mapping
resolution and has been successfully used to order a vari-
ety of markers on swine chromosome (SSC) 2p, 9p, 12
[15,16], and over several chromosome regions, SSC6q1.2
[17], SSC7q11-14 [18], and SSC15q25 [1]. Current RH
maps of SSC10 are built on the IMpRH7,000-rad panel [8,19-
22] where map resolution and marker density are unfor-
tunately not optimal for either fine-mapping QTLs or
genome sequence assembly. Map discrepancies between
various RH maps or between RH and the corresponding
genetic map(s) also exist [7,22-24]. Therefore, an inte-
grated, high-resolution RH and comparative map for
SSC10 should help in resolving discrepancies.

SSC10 is a small metacentric chromosome, comprising
~3.1% (85/2700 Mb) of the pig haploid genome.
Sequencing of SSC10 by the International Swine Genome
Sequencing Consortium (SGSC) and Pig Genome
Sequence Project http://www.sanger.ac.uk/Projects/
S_scrofa/ is based on the BAC fingerprinted contig (FPC)
map http://www.sanger.ac.uk/Projects/S_scrofa/
WebFPC/WebChrom/wcporcine10.shtml and the BES RH
map [25,26], which was built on the IMpRH7,000-rad panel.
An initial draft assembly of SSC10 sequence has recently
been released in Pre-Ensembl http://pre.ensembl.org/
Sus_scrofa/index.html, but only contains ~30 Mb,
roughly one-third of the entire chromosome. Here we
report the generation of an initial high-resolution RH
map of SSC10 that integrates the IMpRH7,000-rad,
IMNpRH212,000-rad RH, porcine genetic and BAC FPC
maps, and allowed us to construct a comparative map of
SSC10 and HSA1, 9 and 10.

Results and Discussion
SSC10 RH12,000 and RH7,000 maps
Two sets of mapping vectors from the IMNpRH212,000-rad
and the IMpRH7,000-rad panels were used to construct the
RH FW map of SSC10. The vectors were merged into one
data-set and analyzed using a maximum multipoint like-
lihood linkage strategy with CarthaGene [27] at a 2 pt
LOD score of 8. Two linkage groups were initially identi-
fied for SSC10 (Table 1, 2). One linkage group was

assigned to the short arm (p), the other group to the long
arm (q) (Fig. 1c–d) based on known MSs and ESTs/genes
from previous genetic and RH maps [6,7,14,21,25,28]. A
FW map for each linkage group was built simultaneously
on both RH panels at a likelihood ratio of 1000:1. The ori-
entation of each linkage group was based on markers pre-
viously assigned to the porcine cytogenetic (Fig. 1a) and
genetic maps (Fig 1b). A total of 107 FW markers com-
mon to the IMpRH7,000-rad (Fig. 1c) and IMNpRH212,000-rad
(Fig. 1d) FW maps were ordered on SSC10 (Table 1, 2).
The accumulated map distance of SSC10 was 2075.1
cR7,000 on the IMpRH7,000-rad and 5168.1 cR12,000 on the
IMNpRH212,000-rad FW maps. This represents a 2.5 fold
increase in map resolution over the IMpRH7,000-rad panel
(Table 1), which is consistent with our previous observa-
tions on SSC2p, 9p and 12, [15,16], and within the 2.2–
3.0 fold range reported on SSC6q1.2 [17], SSC7q11-14
[18], and SSC15q25 [1]. If we assume the DNA content of
SSC10 is ~85 Mb [25], then the kb/cR ratio is ~16.4 for the
IMNpRH212,000-rad FW map, and 41 kb/cR in the
IMpRH7,000-rad FW map, close to the genome average of 15
kb/cR12,000 reported for the IMNpRH2 panel [1,15], and
slightly better than the 47.5 kb/cR7,000 genome average
reported for the IMpRH7,000-rad panel [7]. In the second
generation pig EST RH7,000-rad map [7], SSC10 had the
lowest resolution (highest kb/cR ratio) of the entire
genome with a ratio of 71.4 kb/cR7,000, based on an earlier
estimate of ~103 Mb for SSC10 [7,28]. As chromosome
size estimates (103 vs. 85 Mb; ~17% reduction) alone
cannot account for the reported lower resolution in these
initial reports, a lower marker density and difficulty in
mapping within the nucleolus organizer region (NOR)
must be considered (see discussion below).

We used the CarthaGene software [27] to integrate 88
additional, non-FW markers (Table 1, 2) into the
IMNpRH212,000-rad FW map. They are listed to the right
of the FW map in Fig. 1d (Table 1). If counting the FW and
non-FW markers together, we achieved an average density
of 393.5 kb per marker (85 Mb/216 STS) on SSC10, a sig-
nificant increase in marker density over the ~1.1 Mb/
marker reported for the most current SSC10 RH7,000-rad
EST and BES maps [7,25].

When marker density on SSC10p and SSC10q was ana-
lyzed separately, there was a significant difference in map
resolution between the two arms. The standard porcine
karyotype, places the SSC10 arm ratio (q/p) at 1.2 [30]
with the DNA content of SSC10p estimated at 38.7 Mb
(85 × 45.5%), and SSC10q at 46.3 Mb. The kb/cR ratio of
SSC10p and SSC10q would be 21.3 and 13.8 in the
IMNpRH212,000-rad, and 52.4 and 34.6 in the IMpRH7,000-

rad panels, respectively. This suggests that map resolution
on SSC10p was lower than that of the genome averages in
both panels, whereas SSC10q was higher than the genome
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High-resolution RH comprehensive and comparative maps of SSC10Figure 1
High-resolution RH comprehensive and comparative maps of SSC10. (a) Cytogenetic map of porcine chromosome 
(SSC) 10. The nucleolus organizer region is indicated as NOR; (b) Genetic map of SSC10. Those MS markers that are mapped 
in the current 7,000- and 12,000-rad FW maps and non-FW maps are listed in the genetic map. The four singletons that were 
not in FW maps are marked in italics in a box; (c) The 7000-rad IMpRH framework (FW) map; (d) The 12,000-rad IMNpRH2 
FW map. MSs highlighted in black, genes/ESTs in red, and BESs in magenta. Markers listed between the 7,000- and 12,000-rad 
FW maps are framework markers; those on the right of the IMNpRH2 FW map are non-framework markers; (e) BAC finger-
printed contig (FPC). Contig number, e.g. 10001, corresponds to the FPC maps at http://www.sanger.ac.uk/Projects/S_scrofa/
WebFPC/porcine/; Question mark (?) indicates that the BES 287A21G01 is lack of information in the FPC maps. (f) Compara-
tive to human chromosome (HSA) 1, 9 and 10. Synteny blocks between pig and human, as well as the orientation of the human 
sequences in reference to the SSC10 RH map, are indicated by arrows, with HSA1 in blue, HSA9 in red and HSA10 in green. 
Sequence position of each synteny block in the human genome sequences (Build 36.3) is listed (in Mb) on the right side of the 
chromosomes.

�������	
�
������ ����
�
������ �������������������� ������������������������ 
��� ��!"�

���� ��������

#�����������$
����

����% ���&�������

'��

%(��&)

%(�*&�

+���,,)

+��")-�
%�-)�

.'�)

�%� �

%(��&,
�.�/�
0�-1

�&��#1*
+�2'��

0� ��
+� "�

 2"-

 �3�

�.%'�

+�����*

-���,�1)&

4����1
%(��,*&

%%��) ��
%%������
%���

�*� '.�5������6
�7

(0�*� 
�&&������

008),
+���)&&

%(�--*
*�1 ��!�1

-))������

-�������1

�'�8�
%% �

��%�5������6
�7

�1� ����,

%(**-

.�!��

*�� ����)

9%.� ��--���
%(�*&
9%.� ��)�!�&

0+%"��

-�& ����*
 0"�.

9"�8�

�,1������

+���--

+����,�

� "��

!�"�
+���,�1

*�*��0��
-���1,),)

-�� ����-
"."��
+�����*&
��) �
�,� �����
9'!-

+���,�)
��"9"

.����
+���&�)

�%�"�
�,� ��9��
-��,-,))1

�����

����	

����


�����

�����

����

:
�����

����	

%(,-�

%(��-1

%��-,

%(�*&

%(�1�

%(**-

%(�,&*

	�


�

��

��

�

%(*&�

%(��&

%�-)�

%(�*&�

%(��&)

%(��&,

%(��,*&

%����

16

"%9��
�."/�

9%.� ��)*0��

�*, �����

��

�

�����

�����

���		

�
���

�% �

�% &

�&���&���

�,1�*����

��-�,����

��)������

�*-�&����

�*��*)���

�&)�*����

���������

&&������

,)�--���

-*������

����-)���

�-1��&����

����&)���

. !� 

��'��

�*� '.�

�

��

���

���

	��

	��


��


��

���

���

���

���

��

��

���

�

�

��

���

���

	��

	��

�)* �� ��

9%.� ��&)��-

%(,-�

+��')

��%�

-�) ����,

%��-,

--, ��!�)

%(��-1

*�1 �����

/�.0-

2,(8�1

9%���

---�����*

�,) ����,

%(�1�

%(�,&*

*�1���0��

-��,�����

/�3

(0��1

�1- ��!��
!';-)-,�

9%.� ���)��&

��� �����

�1,�����)

*�1 �����
%(*&�

�)� ��9��

9%.� ���,9�1

9%.� ��-,!�1
/�  �*,-

����
9%.� ��&) �-

9%.� ���,��1

9%.� �������

9%.� ������,

/�  ��*�

%(��&

-�&���9��

�*&���9��

������ �*

�,1 ��!��
-���))�*)

0 "/�

-�) ��9�)
�1����9��

�)� ����-

-&,���!�-

��)���!��

�

���

	��


��

���

���

��

���

���

���

����

����

�	��

�
��

����

����

���

����

����

�

���

	��


��

���

���

��

���

15

14

12

13

11

11

N
O

R

N
O

R

+����-,

.�!,

+������)
+���*1�

+�����-�

%(�--*
%(��*�

� "-/,

�)����!��5<����	7

+���*-

%��-&

%(�*&-

!';�����
�,���� �1

%(��,�&
"�=�
"�=�5������6
�7
%(��*-

�1* ����*

"�")/�

�''.��
+�����)

9%.� ��,) �,

*�1������
+���&�*

---��� �-

*�-���9�1

�.���
��"�

9%.� ��1-!�-
�+��"�

*-� ����-

+�����&)
*�� ��0�&

��� ��9��
�0��5������6
�7

*�-��� �*

��9�

%(���,

�.���

!';�*)&�

 /����

��,���9��

�����

����

��

��

��

���

���

�	�

%(��),

%(�&&�

%(�*�)

%(���-
%(����
%(&��

%(-�)

%(&)�

%(�1�1

%(�1�

%(�--*
%(��*�

%(�*&-

%(��,�&

%(��*-

%(���,

%(��1�

%(��1��	�

�% ��

���1)���

�,������

-��,*���

���-����

�-��1���

�1�)����

�&�1����

--��-���

-1�*����

��������

�������

�,��1���

�)��&���

�-������

�)����!��5�>>7

%(��),

( �

%?�'

%(�&&�

%(-�)


��


��

���

���

���

���

��

��

���

���

���

���

���

���

����

����

����

����

�	��

�	��

�
��

9%.� ���1 ��

-�1������

�)� �� ��

��� ��!��

%(�*�)

�,&��� ��

*�� ��!��

-�� �����

?��

%. �

�)����!��

��-��� ��

�,) ��0�,

9%.� ��&) ��

9%.� ��,�9�1

%(���-

%(����

%(&��
--&������
�1&�����&

�1, �����

9%.�+��1�1�!�-

"�")/� 

"�.!0��

�%���

9%.� ��-�!�-

9%.� ���1��&

-1����!��

*-� ��9�&

�&)��� ��

�1� ����&

-&1 ����&

�.���5������6
�7

9%.� ��1,��&

%(&)�

%(�1�1

%(�1�

�0��

"!/!�-

�&� ����,

*�1 ��0��

-�� �����

���

���

���

����

����

�	��

�
��

����

����

���

����

����

����

	���

	���

		��

	
��

	���

	���

	��

	���

	���


���

	���


���


	��



��


���

SSC10

12

13

15

17

14

16

http://www.sanger.ac.uk/Projects/S_scrofa/WebFPC/porcine/
http://www.sanger.ac.uk/Projects/S_scrofa/WebFPC/porcine/


BMC Genomics 2009, 10:211 http://www.biomedcentral.com/1471-2164/10/211
average [1,14-16]. There are two possible explanations for
this finding. One is marker density, which is lower in
SSC10p (Table 1). RH FW map length for a given region is
influenced by marker density; the higher the marker den-
sity, the longer the map length (cR); thus, the higher the
map resolution. A second is the localization of the NORs,
or the ribosomal RNA genes (RNR, or rDNA) on SSC10p
near the centromere [31-34]. SSC10 is one of two chro-
mosomes (the other one is SSC8) in the porcine genome
that harbors ribosomal RNA genes (RNR, or rDNA) in
NORs located in the proximal region of SSC10p near the
centromere. Silver-staining (Ag-NOR) indicates that the
porcine RNR genes on SSC10 are constitutively active in
all pig breeds, while their activity on SSC8 varies among
different pig breeds [31]. The ratio of FW vs. non-FW
markers was 1:4 (3 FW/12 non-FW) in the NOR region
(Fig. 1d), significantly biased from the average 1:0.85 on
SSC10 suggesting that building an accurate map for this
region will be difficult. The swine BAC FPC map is also
not contiguous over the same region http://
www.sanger.ac.uk/Projects/S_scrofa/WebFPC/
WebChrom/wcporcine10.shtml. In the human genome,
there are between 150 and 300 copies of ribosomal RNA
gene per haploid genome, that map to the short arms of
acrocentric chromosomes 13, 14, 15, 21, and 22 [35].
Unfortunately, the copy number of the porcine RNR gene
on SSC10 is currently unknown, which limits our ability
to specifically define the extent of the NOR.

It is also worth noting that a pair of markers for five genes
(RGS2, B4GALT1, PHYH, ITGB1, and GDI2) was typed
separately on the IMNpRH212,000-rad panel. As shown in
Fig. 1c and 1d, all five-paired markers mapped next to
each other within a small interval. Since the paired mark-
ers were designed from different laboratories (in Japan
and USA) and typed anonymously, they provide an addi-
tional indication of the resolution and accuracy of the
IMNpRH212,000-rad SSC10 map [15].

Integration of SSC10 RH and genetic maps
Thirty-six of 54 (67%) MSs ordered on the IMNpRH2
panel were mapped on the latest SSC10 genetic map http:/
/www.marc.usda.gov/genome/swine/swine.html (Fig.
1b), of which 23 are FW markers, 9 are non-FW markers,

and the remaining 4 are singletons (a linkage group with
only one marker) (Fig. 1b–d). The order of all FW and
non-FW MS, except for SWR1829 on the SSC10 RH map,
is in agreement with the order on the genetic map (Fig.
1b–d). In addition, the five bins (≤ 5 cM), each with two
to five MSs, on the genetic map (USDA-MARC v. 2.) of
SSC10 (Fig. 1b) http://www.thearkdb.org/arkdb/do/get
MappableDetails?accession=ARKCHR00000010 were all
ordered on the IMNpRH212,000-rad map (Fig. 1c and 1d),
significantly increasing the resolution on the genetic map.

However, two small regions of SSC10 did not completely
align with the genetic map. The first is the NOR-centro-
mere region. The four singleton MSs (KS115, KS199,
S0366, and SW173) (Fig. 1b) were all located in this
region. The second region is close to SSC10qter between
SW2043 and SW1626, where there is a gap between FPC
contigs 10006 and 10007. We determined MS SWR1829
and SW305 were flipped when compared to the genetic
map (Fig. 1b–d). In previous studies, SWR1829 and
SW2043 were reversed [22,24], while the order of SW951
and SW305 was reversed in the IMpRH7,000-rad maps for
SSC10 reported by Aldenhoven et al. [24] and Rink et al.
[7], indicating the difficulty in assigning marker order
within this region.

Integration of SSC10 RH and BAC FPC maps
When the SSC10 RH map was integrated with the corre-
sponding BAC FPC maps based on common BES (Fig. 1c–
e), a total of 7 BAC contigs (10001–10007) were identi-
fied. Contigs 10001–10005 cover SSC10p, while contigs
10006–10007 cover the entire SSC10q (Fig. 1e) with the
order of BESs in the current RH map identical to the FPC
map for the entire chromosome http://www.sanger.ac.uk/
Projects/S_scrofa/WebFPC/WebChrom/
wcporcine10.shtml except for the two small regions also
encountered in the genetic map. We estimate the 4 single-
ton MSs (KS115, KS199, S0366, and SW173) in the
genetic map, the NOR and centromere region of SSC10
cover ~5.5 cM (from 50 cM to 55.5 cM) (Fig. 1b) with the
NOR between 1550 cR12,000-rad and 1850 cR12,000-rad (Fig.
1c) where several small BAC FPCs including contig 10003,
10004 and 10005 are assigned. There were two "free" BES
markers found between contigs 10003 and 10004 in the

Table 1: Comparison between the 12,000- and 7,000-rad RH framework (FW) maps

Linkage group No. of marker* 12,000-rad FW map 7,000-rad FW map Fold change**

FW marker Non-FW marker Map distance (cR) FW marker Map distance (cR) (cR12,000/cR7,000)

SSC10p 87 31 39 1814.5 41 738.2 2.5
SSC10q 129 76 49 3353.6 59 1336.9 2.5
Total 216 107 88 5168.1 100 2075.1 2.5

* Number of marker was the sum of FW and non-FW markers in both RH12,000 and RH7,000 maps (Fig. 1c & 1d).
** Fold change was calculated by dividing the map distance in the 12,000-rad FW map by the map distance in the 7,000-rad FW map.
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RH map (Fig. 1e). One was 309B11E01, which mapped to
the middle of the large FPC contig 17005 http://
www.sanger.ac.uk/Projects/S_scrofa/WebFPC/porcine/.
The other was 287A21G01, for which no information is
available in the BAC FPC database. It is worth noting that
since neither RH mapping nor BAC fingerprinting were
able to accurately map the NOR region, more attention
should be paid to marker assignment and sequencing in
this "problematic" region.

The order of three non-FW BESs (416B21C07,
278B20E07, 403B21E06) at the end of BAC contig 10006
was also inverted (Fig. 1e). Four FW MSs, SW305,
SW1708, SW951 and SW1626 are located in this region
where discrepancies between the genetic and RH maps
were previously reported [7,23,24]. CarthaGene identi-
fied two likely FW map orders for this region, with only a
slight statistical difference in Log10-likelihood (-409 vs. -
410). One order was CREM-ESTAR068B09-SW305-
SW1708-SW951-SW1626. The alternative order was
SW951-SW1708-SW305-ESTAR068B09-CREM-SW1626.
The final RH map (Fig. 1c and 1d) was built according to
the first order based on the assumption that marker order
in the genetic map (Fig. 1b) was correct. However, adop-
tion of the alternative order would not invert the three
non-FW BESs in contig 10006. At present, we are unable
to resolve whether the genetic or the FPC map is correct
without additional markers.

Comparative map between SSC10 and HSA 1, and 9 and 
10
All gene, EST, and BES sequences were BLAT http://
genome.ucsc.edu/ and BLAST http://
www.ncbi.nlm.nih.gov/BLAST/ searched against the
human genome sequence (Build 36.3) to identify regions
of synteny between the human and porcine genomes (see
Additional file 1). The coordinates of 127 markers based
on their positions in the current SSC10 RH map and their
sequence locations in HSA1, 9 and 10 are shown in Fig. 2.
The pig-human comparative map (Fig. 1) built in this
work, not only supports the previous findings by bidirec-
tional fluorescence in situ hybridization (Zoo-FISH) that
SSC10 is in synteny with regions of HSA1, 9 and 10

[36,37], but also refines the conserved synteny blocks
between the two species. Five synteny blocks are con-
served between SSC10p and the distal region of HSA1q
(1q31-43) from 186.4 to 243.9 Mb (Fig. 1a, f, Fig. 2).
However, SSC10q shares regions of synteny with two
other human chromosomes, HSA9 and HSA10. Two
blocks of conserved synteny were identified between the
proximal region of SSC10q (q11-12) and HSA9p13.1-
21.2 (27.7 to 34.7 Mb) and HSA9q21.32-22.32 (85.3 to
97.89 Mb), while six blocks were identified between the
distal region of SSC10q (q13-17.2) and the entire
HSA10p (10p11-15) (1.0 to 37.8 Mb) (Fig. 1f, Fig. 2),
reflecting the macro-rearrangements that occurred during
the evolution of the two species. In addition, several
micro-rearrangements such as those observed on SSC12,
SSC2p and 9p [15,16] were also identified. For example,
the FBP1 (fructose-1,6-bisphosphatase 1) gene located on
HSA10q (see Additional file 1) did not map to the con-
served region between SSC10 and HSA10, but to the
region where SSC10 and HSA1 are conserved at 1310.0
cR/96.57 Mb (Fig. 2). It is reasonable to assume that the
map position of FBP1 in SSC10 is an indication (or a relic)
of an inversion in the region (1310–1860 cR12,000)
between FBP1 and CTSL2 (cathepsin L2) (see Fig. 1d) dur-
ing the evolution of SSC10 which may include the entire
centromere. Two BESs, 309A10G04 at 960.0 cR/239.74
Mb and 404B2D02 at 1505.0 cR/236.09 Mb, were also
not aligned with their synteny blocks. Further characteri-
zation of regions of conserved synteny as well as micro-
rearrangements between pig and human should improve
our understanding of mammalian genome evolution and
assist in swine genome sequencing and assembly.

Gene density across a genome of any mammalian species
is not uniform with some human and swine chromo-
somes described as "gene-rich", and others as "gene-poor"
[1,2]. The first- and second-generation porcine EST RH
maps [6,7] suggested that SSC10 had less than the
expected number of genes based on DNA content [29].
However, none of the corresponding human chromo-
somes/regions (HSA1, 9, and 10) are listed as "gene-poor"
in the human genome [38]. This inconsistency in gene
density within homologous regions of the pig and human

Table 2: A list of markers mapped on SSC10 RH map

Marker type RH panel Linkage group MS BES Gene/EST Total*

FW 1,2000-rad SSC10p 8 8 15 31
SSC10q 16 26 34 76

7,000-rad SSC10p 7 15 19 41
SSC10q 10 28 21 59

Non-FW SSC10p 8 12 19 39
SSC10q 13 15 21 49

*Some of the markers in each linkage group are not common markers to both RH panels, leading to the total number of markers in this table being 
greater than 216.
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genome may be explained by two factors. The size of
SSC10 may have been over-estimated as the initial report
of 103 Mb for SSC10 [29] used in subsequent reports [6,7]
has been revised to ~85 Mb [26]. Alternatively, the NOR
region contains a large number of tandem repetitive DNA
sequences and harbors multiple copies of the RNR genes
that is likely to confound the estimate of gene density.

Conclusion
We merged mapping vectors from the IMNpRH212,000-rad
and the IMpRH7,000-rad panels to construct the highest res-
olution FW RH and comparative map for SSC10, to date,
containing a total of 216 markers. Average map resolution
was 16.4 kb/cR12,000 or 393.5 kb per marker on SSC10.
Although the proximal region of SSC10p (NOR-centro-
mere region) remains a difficult target for physical as well
as linkage mapping, the current map provides a platform
to integrate additional STS from the wealth of data sub-
mitted to the IMNpRH212,000-rad and IMpRH7,000-rad,
genetic and BAC FPC maps. This should improve our abil-
ity to identify breakpoints and micro-rearrangements and
close potential gaps between BAC contigs prior to
sequencing and assembly, as well as provide a useful start-
ing point for higher resolution mapping of QTLs includ-

ing those for meat quality, growth, feed intake and
reproductive traits [8,39-41] on this chromosome.

Methods
Genes/ESTs, MSs and BAC end markers
Primer pair sequences were acquired from normalized,
essentially full-length cDNA libraries [42] or from the lit-
erature. EST markers were derived from a panel of normal-
ized porcine cDNA libraries as described earlier [7]. BAC
end primers were used essentially as reported [25]. MS
primer sequences were obtained from the literature and
public databases [14,28,43]. All primers were optimized
by determining the highest annealing temperature at
which successful amplification of porcine genomic DNA
took place. Primers were then tested with both porcine
and Chinese hamster genomic DNA at species-specific
temperatures [15].

As discussed by Liu et al. [15], we avoided designing
redundant primer pairs for a given gene. However, we
identified five genes with two pairs of primers because
mapping primers were designed from either the gene
cDNA sequence (synthesized in Japan), or from the corre-
sponding EST (synthesized in the USA), that were anno-
tated only recently. The two pairs of primers were treated
as two individual markers and typed separately on the
IMNpRH212,000-rad panel, where they served as internal
controls to evaluate mapping accuracy and resolution.
Additional file 1 provides detailed information regarding
all markers mapped in this work.

RH typing, data merging, and map construction
Two sets of mapping vectors from the IMNpRH212,000-rad
and the IMpRH7,000-rad panels were used to construct the
RH FW map of SSC10 RH as previously described [15,16].
The first set was generated in this work on the
IMNpRH212,000-rad panel (Tables 1 and 2, Additional file
3). The second set was previously typed on the
IMpRH7,000-rad panel (see Additional file 2) [7,25]. The
two data sets were merged using Carthagene software
http://www.inra.fr/mia/T/Carthagene/[27] and merged
data analyzed using a maximum multipoint likelihood
linkage strategy. Each marker was assigned into linkage
groups on the IMNpRH212,000-rad SSC10 map at a 2 pt
LOD score of 8 and a threshold distance ≤ 100 cR between
markers. Common markers refer to the 13 MSs, 61 ESTs/
genes and 43 BESs assigned on both panels. A framework
(FW) map was constructed for each linkage group with a
likelihood difference threshold of 1000:1. Additional
(non-FW) markers were then mapped on the
IMNpRH212,000-rad panel with CarthaGene [27]. Final
maps were drawn using MapCreator http://www.wesbar
ris.com/mapcreator/.

Comparison of gene order between SSC10 and HSA1, 9, and 10Figure 2
Comparison of gene order between SSC10 and 
HSA1, 9, and 10. A total of 127 genes/ESTs and BESs were 
compared based on their positions on SSC10 and HSA1, 9 
and 10. The sequence positions (Mb) of genes on human 
chromosomes (Build 36.3) are compared with corresponding 
genes on the SSC10 RH12,000-rad map (Fig. 1). Map distances 
(cR) for SSC10 are the accumulated sum of the linkage 
groups from Fig. 1. Each diamond represents the Cartesian 
coordinates for a sequence on HSA1, squares for HSA9, and 
triangles HSA10. Any significant change in coordinates 
between adjacent genes indicates a rearrangement. The map 
position of FBP1 at coordinate 1310.0 CR/96.6 Mb is indi-
cated and discussed in the text.
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Comparative mapping
All sequences of the porcine ESTs and BESs were BLAT
http://genome.ucsc.edu/cgi-bin/hgBlat or BLAST http://
www.ncbi.nlm.nih.gov/BLAST/ searched against human
genome sequence (Build 36.3). Once a sequence match
(95% and greater similarity of length 40 bp or more) [15]
was identified, the start position of the sequence in the
human genome was collected (see Additional file 1).
Chromosome locations and start positions of their
orthologs in the human genome were also established for
all genes analyzed (Fig. 1 and 2) using the NCBI human
Map Viewer (Build 36.3) http://www.ncbi.nlm.nih.gov/
mapview/. Cartesian coordinates of 127 genes/ESTs and
BESs based on their map position in HSA 1, 9, and 10 in
SSC10 were also developed (Fig. 2). Map distance (cR) for
SSC10 in Fig. 2 were the accumulated sum of the linkage
groups from Fig. 1c and 1d.
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