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Abstract 

Background 

Perturbations in intestinal microbiota composition have been associated with a variety of 
gastrointestinal tract-related diseases. The alleviation of symptoms has been achieved using 
treatments that alter the gastrointestinal tract microbiota toward that of healthy individuals. 
Identifying differences in microbiota composition through the use of 16S rRNA gene 
hypervariable tag sequencing has profound health implications. Current computational 
methods for comparing microbial communities are usually based on multiple alignments and 
phylogenetic inference, making them time consuming and requiring exceptional expertise and 
computational resources. As sequencing data rapidly grows in size, simpler analysis methods 
are needed to meet the growing computational burdens of microbiota comparisons. Thus, we 



have developed a simple, rapid, and accurate method, independent of multiple alignments and 
phylogenetic inference, to support microbiota comparisons. 

Results 

We create a metric, called compression-based distance (CBD) for quantifying the degree of 
similarity between microbial communities. CBD uses the repetitive nature of hypervariable 
tag datasets and well-established compression algorithms to approximate the total 
information shared between two datasets. Three published microbiota datasets were used as 
test cases for CBD as an applicable tool. Our study revealed that CBD recaptured 100% of 
the statistically significant conclusions reported in the previous studies, while achieving a 
decrease in computational time required when compared to similar tools without expert user 
intervention. 

Conclusion 

CBD provides a simple, rapid, and accurate method for assessing distances between 
gastrointestinal tract microbiota 16S hypervariable tag datasets. 
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Background 

Human-associated microbes outnumber human cells by a factor of ten [1]. The majority of 
these microbes are harbored in the gastrointestinal tract (GIT) and play a strong role in 
determining an individual’s health [2]. Commensal GIT microbes may modulate nutrient 
uptake and utilization, promote GIT development and maturation, extract energy from 
indigestible non-starch polysaccharides, maintain a healthy immune system, and regulate 
brain development and behavior [3-5]. Many diseases, ranging from neurological disorders, 
such as Parkinson’s disease [6], to GIT-related diseases, such as Crohn’s disease (CD) [7], 
ulcerative colitis (UC) [8], irritable bowel syndrome [9] and obesity [10,11], are correlated 
with disturbed microbiotas that differ from those of healthy individuals according to some 
studies. Surveying the microbial diversity in the GIT of patients diagnosed with CD and UC 
found differing levels of microbial diversity between healthy and diseased GIT samples [7,8]. 
Evidence examining GIT from obese humans and mice exhibited a markedly decreased 
fraction of Bacteroides and a remarkably increased fraction of Firmicutes [10,11]. These 
studies suggest a strong link between GIT microbial composition and the GIT-related 
diseases. Recent work has correlated the alleviation of disease symptoms with treatments that 
alter the microbiota such as fecal transplants [12]. For example, recurrent Clostridium 
difficile-associated infections have been treated using fecal microbiome transplantation 
(FMT) [13]. The study showed that after two weeks, patient prognosis vastly improved and 
correspondingly, the fecal bacteria composition of the patient became similar to that of the 
healthy donor [12]. While many of these results are preliminary [14-16] in nature, they all 
point to an area of rich research and the growing importance of the GIT microbiota. 



The GIT microbiota composition has profound health implications. Modern characterization 
of GIT microbes is based on culture-independent methods using 16S ribosomal RNA gene 
(rDNA) hypervariable tag sequencing technologies [17]. 16S rDNA is the most widely used 
marker for microbial species identification [18]. Currently, next-generation 16S rDNA-based 
sequencing produces millions of sequences from single run. This advance in sequencing 
technologies, however, represents a significant methodological challenge. Widely used 
methodologies include LIBSHUFF [19,20], analysis of molecular variance (AMOVA) [21-
23], parsimony tests [23-25] and UniFrac [26-28]. LIBSHUFF uses the Cramer-von Mises 
statistic to assess whether or not two microbial communities have the same structure [19,20]. 
AMOVA determines whether or not there is a significant difference between the diversity 
within the two populations and the diversity of all the populations pooled [21-23]. Parsimony 
tests describe whether or not two community structures significantly differ from each other 
[23-25]. UniFrac uses phylogenetic information to detect differences between two 
microbiotas [26-28]. One weakness of the above methods is that they rely on multiple 
alignments and/or phylogenetic inference, making them time consuming and requiring 
exceptional expertise and computational resources. Small changes in algorithms and 
parameters can have significant influences on the results of microbiota comparisons [29-31]. 
The issue created by multiple alignments and phylogenetic inference is the rapid growth of 
the search space for identifying the optimal multiple alignments and phylogenetic trees with 
the number of sequences [32]. As the ability to sequence continues to outpace advances in 
computer hardware, more efficient computational algorithms with little or no sacrifice to 
accuracy will become necessary. 

Data-compression techniques based on the notion of Kolmogorov complexity provide an 
alternative for microbiota comparisons that bypasses multiple alignments and phylogenetic 
inference. Kolmogorov complexity is defined as the minimum amount of information to 
reproduce a set of data [33]. As such, Kolmogorov complexity serves as a measure of the 
repetitiveness within a data set—a powerful proxy for measuring the similarities and 
differences between datasets [34-36]. However, this theoretically defined concept cannot be 
computed exactly. Instead, compression algorithms are often used as an approximation for 
the Kolmogorov complexity [34,35]. The idea of using compression-based metrics on 
biological data has a long and established history. Data-compression techniques have been 
used to construct phylogenetic trees [37], analyze mitochondrial genomes [35], classify 
protein sequences [38], quantify the time-evolution of macrophage gene expression [36], and 
classify 16S rDNA sequences at family level [39]. Here, we extend the application of a data-
compression method for microbiota comparisons based on the repetitive nature of 16S rDNA 
hypervariable tag sequencing. 

In order to efficiently assess differences in GIT microbiota compositions, we develop a 
simple, rapid, and accurate method called compression-based distance (CBD) to 
quantitatively analyze similarities between microbiota samples. As shown in Figure 1, we 
characterize the similarities between microbial communities via the amount of repetition or 
overlap in order to determine microbial community distance. CBD relies on the fact that the 
more repetitive data is the more it can be compressed. By combining 16S rRNA 
hypervariable tag data from different samples and assessing the relative amounts of 
compression, we gain a proxy for the similarities between the communities. We convert this 
to a distance with a minimum of 0 and a maximum of 1 by taking compression gained by 
combining the datasets over the total compressed size of the individual datasets.



Figure 1 Schematic of how CBD measures distance between two microbiotas. Two 
microbial communities (denoted X and Y) have been characterized using 16S variable tag 
sequencing. C(X), C(Y), and C(XY) denote the compressed sizes of dataset X, dataset Y, and 
the concatenation of datasets X and Y. The less similarity between X and Y, the less 
compression their concatenated dataset, XY, undergoes. In the limit of completely different 
microbiomes, the size of the compressed dataset C(XY) is equal to the sum of each 
compressed dataset, C(X) + C(Y). Conversely, when datasets X and Y are very similar, 
C(XY) is smaller than C(X) + C(Y), leading to a smaller CBD value. 

One advantage of CBD is that it operates more directly on the quality-filtered sequence data 
to generate distance matrices, thus omitting the need for expert intervention in multiple 
alignments and phylogenetic inference. In this study, three previously published GIT 
microbiota datasets were used to demonstrate simplicity, speed and accuracy in the 
application of CBD on GIT microbiotas comparisons. Although compression algorithms can 
be parameterized to achieve different levels of compression, our applications of these 
algorithms were done without any significant parameter tuning, highlighting an important 
practical advantage of CBD. 

Results 

CBD provides a one-shot method for determining the level of similarities between two 
microbiotas. CBD omits the need for expert interventions in assigning similar sequences to 
OTUs as well as aligning sequence reads, generating phylogenetic trees, realigning sequence 
reads, and choosing proper software and parameters. For comparison purposes, we used the 
microbiota analysis toolboxes mothur and QIIME which have implemented automated to 
semi-automated functions for microbiota comparisons such as UniFrac (Table 1) [40,41]. 

Table 1 Comparisons of CBD with mothur and QIIME
Mothur QIIME CBD

Interface Command line Command line Web or command line 
OTUs Yes Yes No 

Alignment Yes Yes No 
Phylogenetic tree Yes Yes No 

Software Yes Yes No 
Parameters Yes Yes No 

“Interface” indicates how a user communicates with a computer; “OTUs” indicates that 
clustering methods or algorithms, such as cd-hit, BLAST, furthest neighbor and nearest 
neighbor, must assign similar sequences to operational taxonomic units (OTUs) to generate a 
distance matrix; “Alignment” indicates methods such as PyNAST, MUSCLE, and SILVA 
required to align sequences for generating a distance matrix; “Phylogenetic tree” indicates 
methods such as FastTree are needed to produce a phylogenetic tree to generate a distance 
matrix; “Software” indicates a user needs to select different methods or algorithms for 
choosing OTUs, align sequences and build a phylogenetic tree; “Parameters” indicates a user 
must choose different parameters associated with a corresponding software.

We test the computational efficiency of CBD and find it to be dramatically faster for tested 
sizes of sequences than the popular alternative microbiota comparisons methods, e.g., QIIME 
and mothur, which are also capable to taking an input dataset and outputting a microbial 



comparison in an automated fashion (see Figure 2). Furthermore, the advantages of CBD 
grow as the size of the input files increased. 

Figure 2 Speed comparisons between CBD, QIIME and mothur using GIT microbiota 
of lean and obese twins [42]. Computational time for CBD, QIIME and mothur were 
compared for a variety of dataset sizes. CBD was faster for all datasets tested, particularly for 
comparisons between large datasets. 

In order to assess the accuracy of CBD, three published datasets were chosen to repeat 
previous analyses using distances obtained from CBD: (1) human GIT microbiota [42]; (2) 
humanized mouse GIT microbiota [43]; and (3) human mucosa-associated microbiota [44].

Human GIT microbiota 

Turnbaugh et al. [42] used unweighted UniFrac to analyze a total of 1,937,461 V2 and V6 
bacterial 16S rDNA sequences from fecal samples of 154 individuals (31 monozygotic, 23 
dizygotic twin pairs, and their mothers). The average sequences per V2 and V6 sample were 
3,984 ± 232 and 24,786 ± 1,403, respectively. This revealed that family members had greater 
similarity in their GIT microbiota composition than unrelated individuals; there is a much 
greater resemblance in the GIT microbiotas of lean or obese related individuals than lean or 
obese unrelated individuals [42]. The data were then reanalyzed and compared with 
previously published results. 

For consistency, we only consider comparisons that resulted in statistically significant 
differences between groups. Comparisons using CBD analysis on V6 16S rDNA sequences 
between family and non-family were consistent with the analysis using UniFrac (Additional 
file 1: Table S1, Figure 3a and 3b) [42]. Analyses on V6 16S rDNA datasets showed that 
CBD recaptured the conclusions from previous analyses. However, V6 16S rDNA datasets 
averaged about 24,000 reads, whereas clinically, one would prefer to utilize shallower 
sampling of the GIT microbiota for cost efficiency with the same confidence level. V2 16S 
rDNA datasets had an average of about 4,000 reads and were used to test the performance of 
CBD under a restricted information circumstance. Comparisons using CBD analysis on V2 
16S rDNA sequences were consistent with the analysis using UniFrac (Additional file 1: 
Table S1, Figure 3c and 3d) [42]. Analyses on V2 16S rDNA datasets revealed that CBD 
performed well as UniFrac on computing similarities among multiple microbiota categories. 
CBD using 16S rDNA sequences provided sixteen out of sixteen distance relationships 
matching those found by Turnbaugh et al. (Additional file 1: Table S1, Figure 3) [42]. 

Figure 3 Comparison of 16S rDNA UniFrac and CBD using GIT microbiota of lean and 
obese twins [42]. CBD run on V6 and V2 16S rDNA sequences (average 24,786 ± 1,403 
sequences per V6 sample and average 3,984 ± 232 sequences per V2 sample) demonstrated 
agreement with UniFrac analysis [42]. (a) Average unweighted UniFrac distance between 
family and non-family from Turnbaugh et al. [42] The graph was reproduced according to the 
value in the y-axis of Supplemental figure 1a from Turnbaugh et al. [42] (b) Average CBD 
between family and non-family (* P < 0.001; mean ± SEM). (c) Average unweighted UniFrac 
distance between Twin-Twin, Mother-Twin, and family-unrelated individuals, lean related 
and lean unrelated individuals, obese related and obese unrelated individuals from Turnbaugh 
et al. [42]. The graph was reproduced according to the value in the y-axis of Figure 1a from 
Turnbaugh et al. [42] (d) Average CBD between Twin-Twin, Mother-Twin, and family-



unrelated individuals, lean related and lean unrelated individuals, obese related and obese 
unrelated individuals (* P < 0.05; mean ± SEM). 

Humanized mouse GIT microbiota 

Turnbaugh et al. [43] used unweighted UniFrac to analyze V2 16S rDNA sequence data to 
investigate the effect of diet on humanized murine GIT microbiota composition. They 
transferred fresh or frozen human feces into germ-free mice and observed the effect of a 
dietary switch from low-fat to high-fat diet on humanized mouse GIT microbiota. They also 
transferred microbiota from humanized mice fed low-fat or high-fat diet into germ-free mice 
to observe the effect of the diet switch from low-fat to high-fat diet on humanized mice. They 
revealed that the dietary switch induced changes in the composition of humanized GIT 
microbiota within one day. Samples taken from mice on a low-fat diet with transplanted 
microbiota from mice on high-fat diets and mice on a high-fat diet with transplanted micro 
biota from mice on low-fat diets showed intermediate clustering by day 1 while clustered in 
accordance with recipient diet by day 7. The V2 16S rDNA sequence data were reanalyzed 
using CBD to determine the impact of diet manipulation on humanized GIT microbiota 
composition. CBD analyses of V2 16S rDNA sequences were consistent with those analyses 
using UniFrac (Figure 4) [43]. 

Figure 4 Comparison of 16S rDNA UniFrac and CBD using humanized mouse GIT 
microbiota [43]. CBD analyses using V2 16S rDNA sequences were consistent with the 
UniFrac analyses [43]. (a or b) UniFrac-based principal component plots (PCoA) reproduced 
based on previously published analysis and CBD-based multidimensional scaling analysis 
(MDS) showed clustering of microbiotas by diet. The microbiotas were collected from mice 
transferred fresh human feces on first day after diet switch. (c or d or e or f) UniFrac-based 
PCoA reproduced based on previously published analysis and CBD-based MDS revealed that 
mice fed low-fat diet but with microbiota from humanized mice fed high-fat diet and mice 
fed high-fat diet but with microbiota from humanized mice fed low-fat diet showed 
intermediate clustering on day 1 while clustered in accordance with recipient diet on day 7. (g
or h) UniFrac-based PCoA reproduced based on previously published analysis and CBD-
based MDS showed clustering of microbiotas by diet. The microbiotas were collected from 
mice transferred frozen human feces on first day after diet switch. The UniFrac distance 
matrix, which was used to produce Figure 4a, 4c, 4e, and 4g, was generated by QIIME with 
default parameters (except using cd-hit for OTUs picking) from V2 16S rDNA sequences 
downloaded from Turnbaugh et al. [43]. In Figure 4a, 4b, 4g, and 4h, blue diamonds and red 
squares indicate samples collected from mice fed low-fat and high-fat diet, respectively. In 
Figure 4c and 4d, blue diamonds indicate samples collected from low-fat donor and low-fat 
recipient on first day; red squares indicate samples collected from high-fat donor and low-fat 
recipient on first day; green triangles indicate samples collected from low-fat donor and high-
fat recipient on first day; purple circles indicate samples collected from high-fat donor and 
high-fat recipient on first day. In Figure 4e and 4f, corresponding hollow patterns represent 
samples collected on day 7. 

Human mucosa-associated microbiota 

Walker et al. [44] determined the effects of disease on human GIT microbiota compositions. 
Full-length mucosa-associated bacterial 16S rDNA from inflamed and non-inflamed regions 
of 6 UC and 6 CD patients were compared to those from 5 healthy controls. Their study 
revealed that mucosa-associated microbiotas clustered as individuals rather than by disease 



cohort. CBD was used to reanalyze the data to reveal the relationships between diseased and 
healthy GIT microbiotas. The CBD analyses using full-length 16S rDNA sequences were 
consistent with the analysis using UniFrac (Figure 5) [44]. 

Figure 5 Comparison of 16S rDNA UniFrac and CBD using human mucosa-associated 
microbiota [44]. CBD analyses using full-length 16S rDNA sequences were consistent with 
the Fast-UniFrac analyses [44]. (a) Clustering of individual microbiotas using UniFrac-based 
PCoA. The graph was reproduced according to the values in the Figure 5 from Walker et al.
[44]. (b) Clustering of individual microbiotas using CBD-based MDS. Each dot represents an 
individual sample. Blue circles indicate healthy controls. Red squares donate CD patients. 
Green triangles represent UC patients. 

Discussion 

The development of advanced and cost-effective DNA sequencing techniques enables the 
generation of tremendous datasets. For example, three recent studies reported that Illumina 
GAIIx or HiSeq platform produced millions of reads [45-47]. To accommodate this high-
throughput data generation, simple and fast tools are extremely important for efficiently and 
accurately extracting information to further characterize microbiota. Increasing the efficiency 
of microbial community comparisons has profound implications for research. The CBD 
method described here facilitates efficient similarity comparisons between microbiotas. 

CBD generates the distance matrix directly from sample sequences in relatively few steps. In 
contrast, the tree-based metric required multiple steps including assignment of OTUs, 
alignment, production of phylogenetic trees and generation of a distance matrix [42]. 
Furthermore, Caporaso et al. [41] determined that approximately 92% of the computational 
time was devoted to picking OTUs rather than determining distance assessment. Compared to 
QIIME and mothur, CBD required much less time completing the distance matrix from large 
numbers of sequences. 

The accuracy of CBD was demonstrated by the reproduction of the statistical relationships 
between different classes of microbiotas and the ability to reproduce the results from 
microbial comparison using various methods. In this way, CBD was shown to be a robust and 
useful tool. However, we note that CBD is not a wholesale replacement for more involved 
analyses. For example, CBD does not provide information such as taxa or OTU distributions. 
It provides a simple, rapid, and accurate metric for comparing distances between entire 
communities of microbes, not a fine-grained assessment of particular species within a 
community. 

The simplicity, speed, and accuracy of CBD suggests that it facilitates microbiota research 
when used in human-related samples. It does not require enormous sequencing depths 
obtained from non-invasively collected stool samples, and it is relatively simple for a 
biological/clinical researcher to compute CBD values. There is increasing evidence 
advancing the application of GIT microbiota assessments. Smith et al. [48] have implicated 
the GIT microbial composition as a causal factor of Kwashiorkor. Qin et al. [49] reported that 
the GIT microbiota of CD patients could be differentiated from that of healthy controls and 
UC patients based on the abundance of 155 bacterial species. Khoruts et al. [12] observed 
two weeks after fecal transplantation that fecal microbes of Clostridium difficile-associated 
disease patients were similar to those of healthy donors. In a recent study, switching mice 



from a low-fat diet to a high-fat diet was shown to abruptly change the population of GIT 
microorganisms within one day [43]. Potentially, CBD could aid more informed microbial 
management by comparing the microbiota before, during, and after manipulation. It could 
facilitate the exploration of new treatment strategies, and it could be used for diagnosis and 
prognosis of GIT-related diseases. 

The focus of this work was to explore CBD as a tool for microbiota community comparison 
with a focus on clinical applications. However, the principles behind CBD should be equally 
applicable to any set of sequenced amplicons. This may be useful in other studies related to 
the microbiota that focus on fungal or other eukaryotic organisms in the gastrointestinal tract 
or other environments by examining 18S rRNA hypervariable tag sequencing or internal 
transcribed spacer regions (ITS). 

CBD is web-based and freely accessible at http://tornado.igb.uiuc.edu/CBD/CBD.html. 
Sequence data in FASTA format can be directly uploaded to the CBD website for analysis. 
CBD is copyrighted by the board of trustees of the University of Illinois. 

Conclusion 

CBD provides a simple, rapid but accurate method for microbiota comparisons. It uses the 
relative compression of combined and individual datasets to quantify overlaps between two 
microbial communities, therefore is independent of multiple alignments and phylogenetic 
inference. CBD worked directly on sequence datasets without intermediate steps. The speed 
advantages of CBD over pipelines in QIIME and mothur became more pronounced as dataset 
size increased. Tests run on previously analyzed data indicated strong agreement between 
CBD and more time-consuming analyses. 

Methods 

Compression-based distance 

We developed a new method, Compression-based Distance, to assess similarities between 
two 16S amplicon datasets, X and Y. CBD uses the relative compression of the concatenated 
16S rDNA hypervariable tag sequencing datasets XY and individual 16S rDNA 
hypervariable tag sequencing datasets X and Y to produce a distance value to quantify 
overlaps between two microbial communities according to the following formula: 

where C(X) indicated the size of data X after compression, C(Y) indicated the size of data Y 
after compression, and C(XY) denoted the size of concatenated data XY, where data Y was 
concatenated to the end of data X, again after compression. Lempel-Ziv-Markov chain-
Algorithm (LZMA) compressor (compression level −9) was used. The range of scores from 
CBD was between 0 and 1 (0, 1) with similar datasets returning smaller values and different 
datasets returning greater values. The similarity between two microbiota calculated by CBD 
metric was influenced by two factors, the number of similar sequences between two 
microbiota and total size of the concatenation of two microbiota datasets. For the same 



number of similar sequences, the bigger the total size of the concatenation of two microbiota 
datasets, the greater the CBD value was. 

The specific tool we chose for compress (LZMA) was based on tests that indicated LZMA 
provided better compression ratios in comparison to other commonly available compression 
tools such as zip, gzip, or bz2. For all datasets, we removed the sequence labels before 
compressing so that the sequence names do not affect our results. Our datasets were then 
sorted before compression in order to improve the compression ratio further. Sorting resulted 
in a large performance boost, especially for larger datasets that were larger than the memory 
footprint of the compression algorithm, by placing similar sequences near each other in 
memory. 

Test of CBD on artificial datasets 

A reliable metric of community distance will return greater values for communities that were 
more distant and smaller values for communities that were virtually the same. In order to test 
if CBD met these criteria, we applied CBD to ten sets of artificial datasets generated by 
sampling different proportions of sequences obtained from ten different pairs of individuals 
(merged TS20_V2 and TS51_V2 data, merged TS12_V2 and TS19_V2 data, merged 
TS9_V2 and TS21_V2 data, merged TS7_V2 and TS27_V2 data, merged TS15_V2 and 
TS30_V2 data, merged TS90_V2 and TS91_V2 data, merged TS74_V2 and TS83_V2 data, 
merged TS88_V2 and TS103_V2 data, merged TS95_V2 and TS104_V2 data, merged 
TS50_V2 and TS64_V2 data from a recent GIT microbiota study of obese and lean twins) 
[42]. This allowed us to know, a priori, the relative similarities between the datasets. In 
Figure 6, CBD for each pairwise comparison between the artificial datasets and TS20_V2 
data or TS19_V2 data or TS21_V2 data or TS7_V2 data or TS15_V2 data or TS90_V2 data 
or TS83_V2 data or TS88_V2 data or TS95_V2 data or TS50_V2 data were plotted. As 
expected, CBD revealed that distances decrease with an increasing proportion of sample 
overlap, verifying that CBD reliably assessed similarities. Furthermore, the response function 
appeared to be nearly linear and utilized almost the full range of values from 0 to 1. This 
suggested that the metric had the appropriate scale of sensitivities for GIT defined datasets. 
Artificial datasets and distance matrices can be freely downloaded at 
http://tornado.igb.uiuc.edu/CBD/CBDFiles/CBDDownload.html. 

Figure 6 CBD values for individual pairwise comparisons between artificial datasets 
and TS dataset. TS dataset represents one of the following: TS20_V2 data, TS19_V2 data, 
TS21_V2 data, TS7_V2 data, TS15_V2 data, TS90_V2 data, TS83_V2 data, TS88_V2 data, 
TS95_V2 data, and TS50_V2 data. Artificial datasets were constructed from mixtures of 
TS20_V2 and TS51_V2 dataset, TS12_V2 and TS19_V2 dataset, TS9_V2 and TS21_V2 
dataset, TS7_V2 and TS27_V2 dataset, TS15_V2 and TS30_V2 dataset, TS90_V2 and 
TS91_V2 dataset, TS74_V2 and TS83_V2 dataset, TS88_V2 and TS103_V2 dataset, 
TS95_V2 and TS104_V2 dataset, TS50_V2 and TS64_V2 dataset, respectively. CBD value 
decreased with increased proportion of TS dataset in artificial datasets as expected. 

We have shown CBD to be sensitive to changes in microbiota composition. We now examine 
it’s robustness to finite size effects from comparisons between datasets of different sizes. As 
a test, artificial datasets generated by randomly sampling different numbers of sequences 
obtained from two individuals (merged TS8_V2 and TS20_V2 from a recent GIT microbiota 
study of obese and lean twins) [42] were pairwise compared with each other to obtain CBD 
values. TS8_V2 and TS20_V2 contained 17,000 and 37,000 sequences, respectively. In 



Figure 7, CBD for each pairwise comparison among the artificial datasets were plotted. It 
revealed that CBD value was primarily a function of the number of overlap between two 
datasets and not the total size of any particular dataset. The overall CBD value remained 
largely robust to the size of the datasets past 4000 reads per sample. Artificial datasets and 
distance matrices can be freely downloaded at 
http://tornado.igb.uiuc.edu/CBD/CBDFiles/CBDDownload.html. 

Figure 7 CBD values for individual pairwise comparisons between artificial datasets.
CBD values for individual pairwise comparisons using artificial datasets produced by 
randomly sampling different numbers of sequences from TS8_V2 and TS20_V2 dataset. 
CBD metric was not very sensitive to absolute size except for extremely small values. 

In order to further quantify the influence of sequence library size on CBD value, artificial 
datasets generated by randomly sampling different numbers of sequences obtained from an 
individual (merged TS8_V2 from a recent GIT microbiota study of obese and lean twins) 
[42] were pairwise compared with another individual (merged TS20_V2 from a recent GIT 
microbiota study of obese and lean twins) [42] to obtain CBD value. In-house python script 
was used to do an exponential curve fitting. In Figure 8, CBD for each pairwise comparison 
among the artificial datasets and TS20 dataset were plotted. Figure 8 revealed that CBD 
metric converges rapidly with sample size. Artificial datasets and distance matrices can be 
freely downloaded at http://tornado.igb.uiuc.edu/CBD/CBDFiles/CBDDownload.html.

Figure 8 CBD values for individual pairwise comparisons between artificial datasets 
and TS20_V2 dataset. CBD values for individual pairwise comparisons between artificial 
datasets produced by randomly sampling different numbers of sequences from TS8_V2 and 
TS20_V2 dataset. CBD metric converges rapidly with sample size. Note that the Y-axis 
spans a mere 4% of the CBD scale. The scale of the Y-axis has been blown up in this way so 
that we could display the differences between different points to the reader. 

Datasets used in this analysis 

In this study, three previously published GIT microbiota datasets were used: 1) V2 and V6 
16S rDNA datasets from a recent study that focused on the GIT microbiotas of lean and 
obese twin pairs and their mothers [42]; 2) V2 16S rDNA datasets from an analysis of the 
effect of diet switch from low-fat diet to high-fat diet on humanized murine GIT microbiota 
composition [43]; and 3) full-length 16S rDNA datasets from mucosa-associated microbiotas 
from inflamed and non-inflamed sites of CD and UC patients in the colon as well as that from 
healthy controls [44]. These datasets were used to test if CBD could successfully recapture 
the conclusions of previous clinical studies. The links to the three published GIT microbiota 
datasets can be found at http://tornado.igb.uiuc.edu/CBD/CBDFiles/CBDDownload.html. 
The first human GIT microbiota data was also used to assess the speed of CBD. 

Measurement of computational time 

The first five, ten, fifteen, and twenty V2 16S rDNA datasets at the first time point in 
Additional file 1: Table S1 of Turnbaugh et al. [42] were chosen to form four group files. 
One thousand sequences were randomly chosen from each file within the group files to be 
pairwise compared to each other using CBD or QIIME pipeline (http://qiime.sourceforge.net) 
with default parameters (except using cd-hit for OTUs picking) or mothur (using unique.seqs 



to remove identical sequences, align.seqs to align unique sequences, clearcut to produce 
neighbor joining trees, and unifrac unweighted to generate UniFrac distance matrix) in order 
to produce a CBD distance matrix or an unweighted UniFrac distance matrix [40,41]. 
Because QIIME integrates many 16S rDNA analysis software tools into one system, the 
fastest way to run QIIME (v.1.2.0) is to build QIIME Virtual Box, which requires at least 
1024MB memory, 120GB storage and a 64-bit system [41], the time analysis of CBD and 
QIIME was operated using same computer configuration (8 Intel(R) Xeon(R) CPU E5504 at 
2.00GHz). Because the generation of tree file with clearcut command in mothur v.1.24.1 
requires large amounts of memory (RAM), the time analysis of CBD and mothur was 
operated in large memory cluster located at Institute for Genomic Biology at University of 
Illinois at Urbana-Champaign (2 Nodes, 16 2.4GHz Intel CPUs and 256 GB of RAM as well 
as 24 2.0 GHz Intel CPUs and 1024 GB of RAM) [40,41]. Sequence data used to measure the 
computational time can be downloaded at 
http://tornado.igb.uiuc.edu/CBD/CBDFiles/CBDDownload.html. 

Mantel test for dissimilarity between CBD and UniFrac matrix 

The Mantel statistic based on Pearson’s product–moment correlation with 1000 permutations 
was used to evaluate relation between CBD and unweighted UniFrac distance matrix. The 
first twenty V2 16S rDNA datasets at the first time point in Additional file 1: Table S1 of 
Turnbaugh et al. [42] was used to perform Mantel test in R language (v.2.11.1). Pearson 
correlation coefficient between CBD matrix and unweighted UniFrac distance matrix 
obtained from mothur was 0.868 (P-value = 0.001), which suggests that CBD distance matrix 
and mothur distance matrix were statistically, significantly, highly and positively related to 
each other. Pearson correlation coefficient between CBD matrix and unweighted UniFrac 
distance matrix obtained from QIIME was 0.208 (P-value = 0.035). This suggests that there 
are lesser, but still statistically significant correlation between the CBD distance matrix and 
the QIIME distance matrix. Pearson correlation coefficient between the mothur distance 
matrix and the QIIME distance matrix was 0.226 (P-value = 0.027), which suggests that these 
matrices are similarly, statistically, significantly and positively associated with each other. 
While all matrices are significantly correlated, there is a disparity in the amount of 
correlation, particularly in comparisons of QIIME. 

Distance matrix 

Sequence datasets from three previous studies were used to generate a respective distance 
matrix. In the study of identical and fraternal twin pairs and their mothers [42], V2 16S rDNA 
sequences from the same person at two different time points were merged. Sequences were 
sorted for each merged V2 and V6 dataset. All pairs of merged V2 or V6 16S rDNA 
sequences were then compared using the CBD metric. These pairwise distances were used to 
generate a distance matrix. Twenty-one pairs of samples were analyzed by CBD (Additional 
file 1: Table S1). In the study of the effect of diet on humanized murine GIT microbiota, all 
GIT microbiotas under different diets were pairwise compared to each other to generate a 
distance matrix [43]. In order to study the effect of disease on GIT microbiota composition, 
all mucosa-associated microbiotas from CD and UC patients’ inflamed and non-inflamed 
sites and healthy controls were pairwise compared to generate a distance matrix [44]. The 
distance matrices can be downloaded at 
http://tornado.igb.uiuc.edu/CBD/CBDFiles/CBDDownload.html. 



P-values 

In the study of identical and fraternal twin pairs and their mothers [42], rows and columns of 
the distance matrix were randomly permutated 1000 times. In order to determine significant 
difference, the distribution of these results was compared to the actual values. 

Metric dimensional scaling 

In order to visualize the distance relationships between data samples from different 
individuals, metric dimensional scaling (MDS) in R language (v.2.11.1) was used to convert 
information into low dimensional and easy-to-visualize space where similarities between data 
points were conserved as much as possible [50]. A two dimensional MDS representation of 
distance matrices was visualized in a 2D graphics by matplotlib (Python 2D graphics package 
used for generating publication-quality images) [51]. 
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