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Abstract

Background: Studies on vertebrate DNA methylomes have revealed a regulatory role of tissue specific DNA
methylation in relation to gene expression. However, it is not well known how tissue-specific methylation varies
between different functional and structural components of genes and genomes. Using whole-genome bisulfite
sequencing data we here describe both CpG and non-CpG methylation profiles of whole blood and brain tissue in
relation to gene features, CpG-islands (CGIs), transposable elements (TE), and their functional roles in an ecological
model species, the great tit (Parus major).

Results: We show that hypomethylation at the transcription start site (TSS) is enriched in genes with functional
classes that relate directly to processes specific to each tissue type. We find that 6877 (~21 %) of the CGIs are
differentially methylated between blood and brain, of which 1186 and 2055 are annotated to promoter and
intragenic regions, respectively. We observe that CGI methylation in promoter regions is more conserved between
tissues compared to CGI methylation in intra and inter-genic regions. Differentially methylated CGIs in promoter
and intragenic regions are overrepresented in genomic loci linked to development, suggesting a distinct role for
CGI methylation in regulating expression during development. Additionally, we find significant non-CpG
methylation in brain but not in blood with a strong preference for methylation at CpA dinucleotide sites. Finally,
CpG hypermethylation of TEs is significantly stronger in brain compared to blood, but does not correlate with TE
activity. Surprisingly, TEs showed significant hypomethylation in non-CpG contexts which was negatively correlated
with TE expression.

Conclusion: The discovery that TSS methylation levels are directly linked to functional classes related to each tissue
provides new insights in the regulatory role of DNA-methylation patterns. The dominant sequence motifs for brain
non-CpG methylation, similar to those found in mammals, suggests that a conserved non-CpG regulatory
mechanism was already present in the amniote ancestor. The negative correlation between brain non-CpG
methylation and TE activity (not found for CpG methylation) suggests that non-CpG is the dominant regulatory
form of methylation in TE silencing.
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Background
DNA methylation is the addition of a methyl (-CH3)
group to the 5’ carbon site of cytosines catalyzed by
DNA-methyltransferases, which occurs mainly at CpG
sites in animals [1]. It is involved in many biological pro-
cesses including modulation of gene expression. The
majority of methylation studies have been conducted on
either humans or model species for human diseases, and
studies on ecological model systems are rare. Moreover,
studies on such systems, where reference genomes are
often lacking, mainly use targeted methods such as MS-
AFLP or RRBS that rely heavily on assumptions from
human and rodent studies and provide only limited
functional insights [2]. We assessed whole genome DNA
methylation in the great tit, a model organism for eco-
logical and evolutionary studies on e.g. the effects of cli-
mate change on natural populations [3], the allocation of
resources to breeding [4], the impact of variation in per-
sonality traits on other life history characters [5] and
one of the first in the class of Aves to study the methy-
lome [6]. Whole methylome information will give us de-
tailed insight into processes related to gene expression,
silencing and tissue specialization, and allows us to bet-
ter predict what variation is important for answering
ecologically relevant questions.
Previous studies on DNA methylation in animals have

focused mainly on CGIs, which are often found near the
TSS and are usually hypomethylated [7]. Methylation in
promoter regions is often found to be negatively-
correlated with gene expression, becoming less access-
ible for transcription factors or RNA-polymerases [8].
However, not all functions and mechanisms of DNA
methylation are well understood. For instance, a positive
correlation is observed between gene expression and
gene body (GB) methylation in many mammalian tissues
[9]. In contrary, a slightly negative correlation was found
in brain neural tissue [6, 10]. Previous studies have dem-
onstrated that GB methylation may have a role in spli-
cing [11, 12]. However, recent evidence contradicts this
[13]. Other studies show that it could prevent interrup-
tive transposable element (TE) insertions [14] and DNA
methylation is known to suppress the activity of TEs in
both plants and animals [15]. However, the underlying
mechanisms of TE silencing differ between plants and
animals [16]. In plants this involves small RNA-guided
DNA methylation of cytosines resulting in a specific sig-
nature of dense methylation in all sequence contexts
(CpG and non-CpG) [17], whereas a similar system in
mammals is unknown, and DNA methylation in TEs
and genes is almost exclusively found in a CpG context.
The methylation landscape can vary between tissue

types, playing a large role in for example gene regulation
[18]. Previous studies have identified differentially meth-
ylated regions across tissues [19–21]. However, these

studies were mainly conducted in mammals and did not
focus specifically on gene features, but rather on differ-
entially methylated regions throughout the genome. The
observation that DNA methylation negatively correlates
with gene expression suggests that hypomethylation oc-
curs in gene promoter regions that are associated with
the biological functions of the tissue. Interestingly, in
mammals CGI methylation levels were found to be more
similar in promoter regions between tissue types com-
pared to intra and intergenic CGIs [20]. Furthermore,
CGIs showing differences in methylation patterns be-
tween tissues were overrepresented at loci essential for
development (ectoderm and mesoderm development,
neurogenesis and segment specification) in human and
mouse [20, 21], suggesting a distinct role for CGI methy-
lation in development.
In addition to CpG-methylation, CHG and CHH trinu-

cleotide sites (where H represents any nucleotide but G)
can be methylated as well, and this type of methylation is
reported for somatic tissues including brain, muscle and
placenta [6, 22–24]. Non-CpG methylation accumulates
during early postnatal development in the mammalian
brain and seems to be driven specifically by the DNA
methyltransferase DNMT3A [25]. CpA dinucleotide sites
are predominantly methylated compared to CpT and CpC
sites in mammals, and are starting to be linked to gene
regulation in the brain [25, 26]. In addition, the methyl
CpG binding protein 2 (MeCP2) binds to methylated non-
CpG sites, with a high affinity for mCpA dinucleotide
sites. The function of non-CpG methylation and the bind-
ing of MeCP2 in brain tissue remains largely unclear, but
some studies hypothesize a role for MeCP2 as a transcrip-
tional repressor [27], whereas others propose a role as a
transcriptional activator [28].
To expand our understanding of DNA methylation and

its possible functions in birds, we investigated both CpG
and non-CpG whole genome DNA methylation in brain
and blood of a passerine bird (great tit, Parus major). We
specifically assess methylation patterns and their func-
tional roles in relation to gene features, CGIs, and TEs.

Results
The great tit methylome
We performed whole genome bisulfite sequencing in
brain and blood samples from a single adult male great
tit recently used for genome assembly and annotation
[6]. A total of 12.2 (blood) and 10.6 (brain) million CpG
sites with a minimum depth of 10x were covered, repre-
senting 80 and 69 % of the total CpG sites in the gen-
ome, respectively. We observe a higher average CpG
methylation level (the ratio of methylated reads to all
reads covering a specific site) in brain compared to
blood, based on 10,246,241 CpG sites covered (>10x) in
both tissues (50.0 and 42.7 %, respectively; Table 1). The
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large majority of covered CpG-sites were methylated
(relative methylation >10 %) in both brain (73.0 %) and
blood (70.2 %). These numbers are consistent with pre-
vious findings in mammals [29, 30]. We observe signifi-
cant non-CpG methylation in brain (CHG: 3.4 %, CHH:
5.5 %) but not in blood (Table 1). For blood, 97 % of
methylated Cs were derived from CpG sites (Fig. 1). In
brain, the majority of methylated Cs (52 %) were located
at non-CpG sites, but with generally lower methylation
levels. The higher general methylation level in brain is
due to a larger proportion of fully methylated CpG-sites
(>80 %) (Fig. 2). Similar analysis for non-CpG methyla-
tion in brain shows that both CHG and CHH sites have
generally no or very low methylation levels (<20 %) and
similar distributions (Additional file 1: Figure S1). The
majority of non-CpG methylation in the great tit brain
occurs at CpA dinucleotide sites (75 %), representing
72 and 88 % of methylated CHH and CHG sites, re-
spectively (Table 2, Additional file 1: Figure S2).
Additional non-CpG methylation mainly occurs at
CpT sites (22 %), with CpC dinucleotide sites being
rarely methylated (3 %). Furthermore, the average
methylation level for CpA sites is 3.4 %, 1.16 % for
CpT sites, and only 0.31 % for CpC sites (Table 2).

Further sequence analysis revealed a dominant CAC
sequence motif for CHH methylated sites (Fig. 3).
These motifs are consistent with previous findings in
mammals [26, 31], but have not been described pre-
viously in Aves.
In order to assess the methylation levels in genic re-

gions we divided the genes into specific gene features:
TSS (300 bp upstream - 50 bp downstream of the anno-
tated TSS), five prime untranslated region (5’UTR), GB,
coding sequence (CDS), introns, three prime untrans-
lated regions (3’UTR) and transcription termination site
(TTS; 50 bp upstream - 200 bp downstream of the an-
notated TTS). Methylation levels were further calculated
in the context of gene regions by dividing each gene
into overlapping sliding windows and including the
10 kb upstream and downstream regions (Additional
file 1: Figures S3, S4). We found low methylation
levels in TSS and 5’UTR regions and higher methy-
lation levels in the GB increasing towards the 3’UTR
before decreasing again near the TTS. We found
higher methylation levels in coding regions com-
pared to intronic regions (Additional file 1: Figure
S5) and longer genes have generally higher CpG
methylation levels (Fig. 4).

Table 1 Methylation profiles in blood and brain. Methylation density describing the proportion of methylated sites (>10 %) in the
genome

Site Sample Covered sites Average methylation level for shared sites (%) Methylated sites (>10 %) Methylation density (%)

CpG Blood 12208277 42.74 8567823 70.18

Brain 10565030 50.01 7714048 73.01

CHG Blood 72303421 0.09 69783 0.10

Brain 56072687 1.35 1926491 3.44

CHH Blood 171057234 0.09 175551 0.10

Brain 118239257 1.94 6506253 5.50

Fig. 1 Relative proportion of methylated Cs (methylation level >10 %) in brain and blood for three sequence contexts. The majority of
methylated Cs were located at CpG sites in blood, compared to CHH and CHG sites in brain
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Differential CpG methylation between blood and brain
We identified genes differentially methylated between
brain and blood in three gene features; TSS, GB, and TTS.
Based on the fold change calculated from the relative
methylation in the two tissue types, we extracted the 5 %
of genes with most extreme methylation fold changes
(upper and lower 2.5 %) between tissues for enrichment
analysis (Table 3). For TSS, GB, and TTS these sets in-
cluded 382, 410, and 289 genes, respectively. We found
very little overlap in the set of differentially methylated
genes from the three gene features (Additional file 1:
Figure S6). Gene ontology (GO) enrichment analysis
showed that genes with a hypomethylated TSS in the
brain compared to blood were enriched in categories
linked to regulation of axonogenesis, neuronal synaptic
plasticity, neurogenesis, and spindle localization
(Additional file 2: Table S1). In contrast, genes with a
hypomethylated TSS in blood compared to brain were
largely enriched in categories linked to lymphocyte and
leukocyte cell activation, immune response, and
hemopoiesis (Additional file 2: Table S2). Many of these
enriched biological processes correspond directly to the
specific functions of the examined tissues. Moreover, this

result suggests that, at least in brain and blood, genes are
generally TSS-hypomethylated in the tissue they are ex-
pected to be expressed in. Genes with hypermethylated
GBs in brain compared to blood are involved in the (posi-
tive) regulation of transcription, development (cell fate
commitment, regionalization, embryonic and organ devel-
opment/morphogenesis), and regulation of immune
system process (Additional file 2: Table S3). GB hypo-
methylated genes in brain compared to blood are involved
in transcription, RNA-splicing, and translation (Additional
file 2: Table S4). These results suggests that genes involved
in transcription, splicing, and translation are generally
GB-hypomethylated in brain to enhance their transcrip-
tion, while genes important for developmental processes
are GB-hypermethylated to silence their transcription,
supported by significant differences in brain gene expres-
sion data between the two sets (TSS; p < 1x10−10, GB; p <
1x10−9, TTS; p < 0.01; Table 3). Genes with hypermethy-
lated TTS in brain compared to blood are involved in the
negative regulation of transcription, opposite of GB-
hypermethylated genes (Additional file 2: Table S5). The
difference in expression in relation to brain methylation
supports the observed negative correlation between

Fig. 2 Distribution of methylation level in blood and brain for mCpG-sites. Methylated CpG sites (methylation level > 0 %) covered in both tissues
are divided into ten bins according to their methylation level on the x-axis. The y-axis indicates the proportion of total CpGs that are methylated
within each bin. A higher abundance of hypermethylated (methylation level > 80 %) CpG sites was observed in brain compared to blood

Table 2 Non-CpG dinucleotide methylation level. Table shows dominant non-CpG methylation at CpA sites in both CHG and CHH
trinucleotide sites

CpH Average methylation level (%) # Methylated CHG sites # Methylated CHH sites

CpA 3.4 1691994 4655570

CpT 1.16 225529 1645482

CpC 0.31 8968 205201

Total 1.75 1926491 6506253
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methylation levels and gene expression in all gene fea-
tures, earlier described by Laine et al. 2016 [6] (Additional
file 1: Figure S7).

CGI CpG methylation
We divided the CGIs into three groups according to
the position of the CGI: promoter associated CGIs
(2 kb upstream - 500 bp downstream of annotated
TSS), intragenic CGIs, and intergenic CGIs. While
promoter CGIs in general tend to be hypomethy-
lated, intragenic CGIs tend to have higher methyla-
tion in both tissues (Additional file 1: Figure S8).
Moreover, when comparing the methylation levels of
these CGIs in blood and brain, we found fewer dif-
ferentially methylated CGIs in promoter regions
(11.9 %) compared to intragenic and intergenic CGIs
(23.0 and 25.3 %, respectively; Table 4). We found
that genes associated with hypermethylated CGIs
(both promoter and intragenic) in brain compared to
blood are largely involved in developmental

processes (morphogenesis, cell differentiation, organ
development, embryonic development, and system
development; Additional file 3: Tables S1, S2). These
results are consistent with previous studies where
differential methylation across tissues was found in
genes linked to development [20, 21]. Genes associ-
ated with hypomethylated promoter CGIs in brain
compared to blood are involved in the protein secre-
tion of platelet, neurotrophin production, and regula-
tion of protein targeting to membrane (Additional
file 3: Table S3), while genes with hypomethylated
intragenic CGIs in brain are enriched for categories
linked to (neuron) development and differentiation
(cell differentiation, system development, generation
of neurons and neurogenesis; Additional file 3: Table
S4). We observe significantly higher brain expression
of genes associated with both promoter and intra-
genic hypomethylated CGIs compared to hyper-
methylated CGIs in brain (Promoter: p < 1x10−05,
Intra: p < 1x10−07; Additional file 1: Table S1).

Fig. 3 CHG and CHH methylation sequence motifs. Occurrence of nucleotides are given (bits) relative to the distance from the C nucleotide. CpA
sites are predominantly methylated (methylation level >10 %) at both CHG and CHH sites, whereas methylated CpC sites are very rare. Cytosine is
the most dominant third nucleotide at CHH methylated sites

Fig. 4 Relationship between CpG methylation level and gene length. Genes were divided into ten bins according to their length. The figure
shows a positive trend between average methylation level and gene length
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Non-CpG gene methylation in brain tissue
To discover if there is a functional signal related to non-
CpG methylation we divided all genes according to their
non-CpG methylation level in brain and used the upper
and lower 2.5 % to perform GO enrichment analysis.
Genes with no or very low non-CpG methylation (lower
2.5 %) are largely involved in transcriptional/translational
processes (gene expression, mRNA metabolic process,
ribosome biogenesis, and translation; Additional file 4:
Tables S1-S3). The genes with the highest methylation
(upper 2.5 %) in terms of TSS and TTS non-CpG methy-
lation are mainly involved in system development, glial
cell differentiation, gliogenesis and glial cell fate specifica-
tion (Additional file 4: Tables S4, S5), while genes with
highly non-CpG methylated GB are frequently involved in
processes linked to the immune system (adaptive immune
response, leukocyte mediated immunity, B cell mediated
immunity) and cell adhesion (Additional file 4: Table S6).
Genes in the lower 2.5 % have significantly higher expres-
sion (TSS; p < 0.001, GB; p < 1x10−11, TTS; p < 1x10−06)
compared to the highly non-CpG methylated genes
(Additional file 1: Table S2). In addition, we found a posi-
tive correlation between non-CpG methylation level and
gene length (Additional file 1: Figures S9, S10), a pattern
consistent with recent reports in mammals [32, 33]. This
suggests that the observed differences are biased towards
longer genes, where genes involved in protein, DNA, and
RNA metabolism are generally shorter compared to genes
in the upper non-CpG methylation percentiles (involved
in gliogenesis, cell-adhesion or immune response). Add-
itionally, a negative correlation between non-CpG methy-
lation levels and gene expression was observed in all gene
features, earlier described by Laine et al. 2016 [6]
(Additional file 1: Figure S11).

Transposable element methylation
We assessed DNA methylation in 26,834 TEs (mainly
LINE/CR1 and LTR/ERVL elements) divided into short
interspersed elements (SINE), long interspersed elements
(LINE), and LTR retrotransposons. CpG sites within TEs
are largely hypermethylated in both brain and blood
(Additional file 1: Figure S12). The CpG methylation levels
in TEs and upstream and downstream 2 kb flanking re-
gions in brain are significantly higher than in blood, with
the difference in average methylation reaching up to 20 %.
Interestingly, the opposite pattern was observed for non-
CpG methylation, with decreased non-CpG methylation
in TEs compared to their flanking regions in brain
(Additional file 1: Figure S13). Additionally, TE expression
shows a negative correlation with non-CpG methylation
level (Spearman’s rho < −0.11, P < 1x10−15; Fig. 5). This
negative correlation is even stronger in the 2 kb upstream
(Spearman’s rho < −0.20, P < 1x10−15) and downstream re-
gions (Spearman’s rho < −0.19, P < 1x10−15). Surprisingly
this negative correlation was not observed for CpG
methylation (Spearman’s rho: TE-body = 0.033, upstream
= −0.0056, downstream = −0.0023; Additional file 1: Figure
S14). The methylation patterns did not differ between the
different types of TEs.

Independent validation of RNA-seq and WGBS results
In order to validate the RNA-seq gene expression results,
we performed qPCR on 11 randomly chosen genes using
RNA isolated from whole brain tissue of the same individ-
ual, as well as five additional individuals. The results re-
vealed a highly significant positive correlation between the
RNA-seq and qPCR gene expression results (Pearson cor-
relation; r = 0.753, p < 0.001)(Additional file 1: Figure S15).
In order to validate the WGBS methylation results, we

Table 3 Differentially methylated gene features between blood and brain

Feature Covered 2.5 % Brain hypomethylated FPKM Brain hypermethylated FPKM

TSS 15284 382 50.8/25.15 17.7/4.5

GB 16413 410 90.1/35.8 15.9/2.3

TTS 11573 289 67.7/22.1 30.9/9.3

We used the upper and lower 2.5 % of genes based on fold-change to identify differentially methylated genes with the sum of both average methylation levels >
10 % in order to exclude hypomethylated genes in both tissue types. The fourth (brain hypomethylated) and fifth (brain hypermethylated) column show average
and median brain gene expression values expressed as fragments per kilobase of transcript per million mapped fragments (FPKM) for the set of genes with
differentially methylated gene features

Table 4 Differentially methylated CGIs in promoter, intragenic and intergenic regions

CGIs # % Differentially methylated % Brain hypermethylated Brain hypomethylated Associated genes

Total 33054 100.0 6877 20.8 4622 2255 3652

Promoter 9985 30.2 1186 11.9 748 438 1357

Intragenic 8954 27.1 2055 23.0 1246 809 2295

Intergenic 14820 44.8 3743 25.3 2677 1066 0

We calculated the relative methylation levels for CGIs with at least three CpG sites, and determined differentially methylated CGIs using Fisher’s exact test. Table
shows the number of differentially methylated CGIs and associated genes in blood and brain
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generated reduced representation bisulfite sequencing
(RRBS) data using DNA isolated from blood samples from
two additional individuals. An average non-CpG methyla-
tion level of <0.4 % was observed, with only ~2 % of the
methylated sites (relative methylation >10 %) derive from
non-CpG sites in the two RRBS samples (Additional file 1:
Table S4), confirming the lack of non-CG methylation in
the blood. Furthermore, we used the two RRBS samples to
perform correlation analysis on 2000 randomly selected
CpG sites (coverage > 10x in all samples) ranging in
methylation level between 0 and 100 % in the WGBS sam-
ple. We observed a high correlation between the WGBS
and both RRBS samples, with Pearson correlation coeffi-
cients of 0.758 (p < 0.001) and 0.767 (p < 0.001), respect-
ively (Additional file 1: Figure S16). Together, these results
validate the RNA-seq and WGBS results presented here.

Discussion
Until recently, chickens were the only birds with DNA
methylation information available [34]. The recent publi-
cation of the great tit genome has revealed methylation
patterns analogous to those of mammals [6]. However,
the observed dominant sequence motifs for non-CpG
methylation have not been previously described in the
Aves class. We have shown differential methylation
levels between brain and blood for groups of genes
linked to the functions of those tissues. Furthermore,
differentially methylated CGIs between brain and blood
that are located in promoter and intragenic regions are
overrepresented in genetic loci essential for develop-
ment. TEs are hypermethylated at CpG sites but hypo-
methylated at non-CpG sites. Interestingly, TE
expression in brain tissue negatively correlates with non-

CpG methylation, but not with CpG methylation. This
novel finding provides new insights in the mechanism of
TE silencing by methylation in the great tit brain.
We observed a positive correlation between gene

length and methylation level (both CpG and non-CpG).
One explanation is that larger genes can compensate for
lowly methylated TSS and 5’UTR regions, since they
consist of a relatively larger GB. This, however, does not
explain that genes in the first size rank (smallest genes)
show higher methylation in CpG context. Since single
exon genes will be more predominant in the lower rank,
with the methylation levels being higher in coding-
sequences compared to intronic regions, this might ex-
plain the unusually high methylation levels of the smal-
lest gene set.
There is a very strong association between TSS hypo-

methylation and gene function; genes with brain related
functions were also hypomethylated in brain TSS, sup-
porting that decreased TSS methylation is involved in
very specific gene regulation. Interestingly, this signal
was not observed for promoter CGIs. In general, methy-
lation levels are conserved in promoter CGIs between
the two tissues, being hypomethylated in both brain and
blood, supporting the generalization that CGI methyla-
tion silences promoters. Intragenic CGIs tend to show
higher methylation levels. Hypermethylated promoter
and intragenic CGIs in brain are associated with genes
involved in development. One hypothesis is that CGI
hypermethylation in genomic loci linked to development
could silence transcription after brain development. Fol-
lowing human germ cell development, the genome is
demethylated and remethylated [35]. The opposing
hypermethylation of intragenic CGIs in adult brain and

Fig. 5 Non-CpG methylation in relation to TE expression in the brain. Figure shows the non-CpG methylation level in TEs, 2 kb upstream, and
2 kb downstream regions in relation to expression, presented as fragments per kilobase of transcript per million mapped fragments (FPKM). Active
TEs (FPKM > 0) show lower non-CpG methylation levels compared to inactive TEs (FPKM = 0)
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hypomethylation in blood could further be explained by
the negative correlation between gene body methylation
and expression in brain [10] and the positive correlation
in blood [36]. However this does not explain the differ-
ence between adult blood and brain methylation levels
at promoter CGIs.
Non-CpG methylation in (passerine) birds seems to be

restricted to certain tissue types and we only found this
in brain. No or very low non-CpG methylation was
found for genes involved in transcriptional and transla-
tional processes. In addition, these genes show higher
expression compared to the average. We therefore sug-
gest that highly expressed genes have very little or no
non-CpG methylation to enhance transcription. We
found a dominant CAG and CAC sequence motif for
both CHG and CHH methylated sites, as previously de-
scribed in mammals [26, 31]. This supports the existence
of a shared non-CpG regulatory mechanism between
birds and mammals. We could even argue that non-CpG
methylation occurs predominantly on CWG and CWH
sites (W =A or T), because CC dinucleotide sites are
hardly methylated. The observed dominant motifs are
associated with a stronger binding affinity of MeCP2 (es-
pecially the methylated CpA dinucleotide sites) in mam-
mals [32]. MeCP2 has also been shown to preferentially
silence longer genes enriched with methylated CpA sites
[32]. This could explain why we find no or very low
CpA methylation in genes involved in protein, DNA,
and RNA metabolism (which are generally shorter
genes), but do find it in longer genes (e.g. genes involved
in cell adhesion). However, the exact function of MeCP2
binding to non-CpG methylated sites remains largely
unclear and is associated with both transcriptional silen-
cing and activation [27, 28].
The large differences we found in general methylation

levels between brain and blood can be explained by a
larger proportion of fully methylated CpG sites in brain,
where in blood moderate methylation is more abundant.
This dissimilarity might in part be attributed to hyper-
methylated TEs in brain, which are methylated at lower
levels in blood. Methylation of TEs decreases or inhibits
transpositional activity. Previous studies observed large
differences in TE methylation levels between tissues
[37], although not specifically for blood and brain. Op-
posite to CpG methylation, we found decreased non-
CpG methylation in TEs compared to their flanking
regions. In addition, our observation that non-CpG
methylation negatively correlates with TE activity sug-
gests a distinct role for non-CpG methylation in TE si-
lencing in the brain. Surprisingly, we did not observe
any correlation between CpG methylation and TE activ-
ity. Recent studies have shown that TEs are more active
in brain tissue compared to other tissues in mammals
[38]. Based on our results, we hypothesize that non-CpG

methylation is involved in, and is perhaps even the main
regulator of TE silencing in brain.
It is important to note that although we observe a role

for brain methylation in regulating gene expression and
TE activity, the brain consists of several highly distinct-
ive regions with a variety of functions. Therefore, the re-
sults presented here must be taken as the average for
whole brain, and cannot be directly correlated with indi-
vidual brain regions. Moreover, since we only used two
tissue types in our analysis, we can only draw conclu-
sions about differences among these tissues. To make
more general conclusions about tissue-specificity, more
tissues need to be included in the future. Nevertheless,
these results provide new insights and present new pos-
sibilities to further exploration of the role of methylation
(especially the role of non-CpG methylation in TEs) in
specific brain regions. In addition, while whole genome
bisulfite sequencing is considered the gold standard
technique for analyzing genome-wide DNA methylation
patterns, the high cost associated with producing such
datasets limits the number of biological replicates in
studies such as this one. Therefore, although performing
statistical analysis at the genic level allows for robust
statistical analysis within a single sample, and no non-
CpG methylation was detected in the whole blood sam-
ple (as expected), further studies in additional individ-
uals are required to confirm the results presented here.

Conclusion
We show distinct methylation patterns of two tissue
types in the great tit. In addition, we observe a clear link
between methylation and the regulation of gene expres-
sion and TE activity in the brain. The dominant CAG
and CAC sequence motifs for brain non-CpG methyla-
tion, which are also observed in mammals, suggests a
conserved non-CpG regulatory mechanism is present
between birds and mammals. From our results, we
hypothesize a distinct function for CpG and non-CpG
methylation in TE silencing in the brain. This theory is
supported by the contrast between CpG and non-CpG
methylation in TEs. Moreover, a negative correlation be-
tween non-CpG methylation and TE activity (not found
for CpG methylation) shows that non-CpG methylation
is involved in TE silencing and perhaps the dominant
regulatory form of methylation in the brain.

Methods
Sample collection
Whole brain was collected from a single adult male bird,
snap-frozen, and stored in RNAlater (Thermo Fisher
Scientific) until processing. This bird is the same as the
reference genome individual [6]. Whole blood was col-
lected from the same individual from the carotid artery
after euthanization. Approval was received for this from
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the Animal Experiment Committee from the Royal
Netherlands Academy of Sciences (DEC-KNAW) under
protocol number CTE-0705 Adendum I.

Whole genome bisulfite sequencing library preparation
and sequencing
DNA was extracted from whole blood using a Gentra
Puregene Kit (Qiagen, USA) following the manufac-
turer’s protocol. Homogenized whole brain was incu-
bated overnight at 55 °C in 750 μl Cell Lysis Solution
(Gentra Puregene Kit, Qiagen, USA) with 20 μl protein-
ase K. 250 μl of this lysed tissue was added to 250 ul Cell
Lysis Solution. To remove excess of fat and proteins,
500 μl 24:1 chloroform:isoamylalcohol was added and
mixed until homogeneous, followed by 10 min centrifu-
gation at 12.000x g after which the upper layer was col-
lected. Cell Lysis Solution was added to this upper layer
until 500 μl of sample liquid was obtained and total
DNA was extracted according to the manufacturer’s
protocol. DNA was stored in DNA Hydration Solution
(Qiagen, USA), and the concentration was determined
with a Nanodrop 2000 (ThermoThermo Scientific,
USA). DNA was sheared using a Covaris E210 device to
~700 bp peak fragment sizes. One microgram sheared
and purified DNA including 1 ng sheared Lambda DNA
was used for end repair, adenylating and adapter ligation
according to illumina TruSeq LT DNA sample prepar-
ation guide. Adapter Ligated DNA was purified using
AmpureXP beads (Agencourt) and subsequently used
for bisulfite conversion according to EpiTect Plus Bisul-
fite workflow (Qiagen) with small modifications i.e. three
additional rounds of denaturation’s (5 min at 95 °C each)
and incubations (60 °C for 25, 85 and 125 min respect-
ively). Converted DNA was purified following manufac-
turer’s instructions (EpiTect) and split over three parallel
reactions for library amplification using Pfu Cx hotstart
DNA polymerase (Agilent Technologies) and 18 PCR cy-
cles. PCR products were pooled per sample and final
amplified bisulfite converted libraries were quantified
using Qubit (Invitrogen) and Bio analyzer DNA 1000
chip (Agilent Technologies). Libraries were used for
clustering on two partial flowcells on an Illumina HiSeq
2000 system generating 358.3 M (72.4Gbp) and 292.4 M
(59.1Gbp) paired-end reads (101 bp) for brain and blood,
respectively.

Whole genome bisulfite sequencing analysis
Raw reads were trimmed for quality (>20) and adapter
sequences using trim_galore v.0.1.4 (http://www.bioin-
formatics.babraham.ac.uk/projects/trim_galore/), produ-
cing a cleaned set of 334.8 M and 274.8 M paired end
reads for brain and blood, respectively. These reads were
aligned to the great tit reference genome [6] using BS-
Seeker v2.0.6 [39] with Bowtie2 v2.1.0 using the local

alignment mode [40]. In total, 95,79 and 98.04 % of the
genome was covered with an average depth of 31.89x
(52 % mapping rate) and 33.04x (64 % mapping rate) in
brain and blood, respectively. Methylation levels (defined
as the ratio of methylated/total reads at a given site)
were determined using the methylation call scripts from
BSseeker2. All downstream analysis was performed using
sites covered by a minimum of 10 reads.

Methylation variation across gene features
Each gene is subdivided into TSS (300 bp upstream,
50 bp downstream of annotated TSS), GB (representing
the full length of the annotated gene), and TTS (50 bp
upstream, 200 bp downstream of annotated TTS). Tran-
scripts with similar TSS and TTS boundaries were
merged to use a set of unique transcripts for down-
stream analysis. We calculated the fold-change differ-
ence in average CpG methylation level between blood
and brain in all three gene features (TSS, GB, TTS)
where the sum of the relative methylation level in blood
and brain is at least 10 % (to exclude hypomethylated
gene features in both tissues) and with at least three
CpG sites covered. We used the upper (hypermethy-
lated) and lower (hypomethylated) 2.5 % of genes to de-
fine differentially methylated regions. We calculated the
average non-CpG methylation in blood and brain for
TSS, GB, and TTS with at least three non-CpG sites
covered. We divided each region into 40 groups of per-
centiles based on their non-CpG methylation levels
using a custom python script and the upper (40th) and
lower (1st) percentiles were defined as differentially
methylated. The GB was further subdivided into 4 differ-
ent GB features using custom python scripts; 5’UTR,
CDS, intronic sequences, and 3’UTR. We calculated the
average methylation levels for both CpG and non-CpG
sites covering these GB features. In addition, we used a
sliding window approach to correlate the methylation
level with gene expression in brain (Additional file 1:
Figures S7-S11). We used three different gene regions;
the GB, 10 kb upstream, and 10 kb downstream of the
gene boundaries, For each region, we used 40 overlap-
ping sliding windows (5 % of the regions length) with an
overlap of 2.50 %. We subdivided the genes in 10 per-
centiles based on gene length to assess the correlation
between gene length and relative methylation level (over
the full length of the annotated gene).

Non-CpG methylation sequence motifs
Custom python scripts were used to retrieve sequence
motifs (3 bp upstream and 5 bp downstream of the
methylated site) and WebLogo3.3 was used to build se-
quence logos [41].
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CGI prediction and differential methylation
CGIs were predicted using the cpgplot software, part of
the EMBOSS package (version 6.6.0.0) applying default
settings (−window 100 -minlen 200 -minoe 0.6 -minpc
50). In total 33,131 CGIs were identified in the genome.
CGIs were associated with a promoter if the CGI was
annotated within 2 kb upstream to 500 bp downstream
of a gene’s annotated TSS. A CGI was considered intra-
genic if annotated within the boundaries of a gene, or if
it completely covered the gene. We calculated the rela-
tive methylation levels for CGIs with at least three CpG
sites, and differentially methylated CGIs were deter-
mined using a fisher exact test. Bonferroni correction
was used to account for multiple testing, q-value < =
0.05 is considered significant.

RNA-seq library preparation and sequencing
RNA was extracted from homogenized whole brain
using the miRNeasy mini kit (Qiagen) following the
manufacturer’s protocol. For library preparation we used
the TruSeq Stranded RNA Sample Preparation Kit (Illu-
mina) using a barcoded adapter. Sequencing was per-
formed on an Illumina HiSeq 2000. This resulted in
229.6 M (46.4Gbp) paired-end 100 bp RNA-seq reads.

RNA-seq analysis
FastQC (http://www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc/) was used to check the quality of the se-
quences and low-quality bases were trimmed off using
Fastq-mcf [42]. In total, 200.8 M trimmed paired end
reads were aligned (84.7 % overall mapping rate) against
the reference genome with Tophat v2.0.10 using –max-
multihits 20, –read-realign-edit-dist 0,–mate-inner-dist
50,–mate-std-dev 150 [43]. Tophat analysis included a
pre-alignment to the reference genome to filter out reads
extending the maximum number of alignments (-M op-
tion) followed by alignment to the reference transcriptome
(-G) and alignment to the genome. Transcript assembly
and quantification was done with Cufflinks v2.2.0 includ-
ing the annotation (-g option),–overlap-radius 5 and –in-
tron-overhang-tolerance 5. Expression values were
extracted from the cufflinks output and represented as
fragments per kilobase of exons per million mapped reads
(FPKM) [43]. We used a two sample t-test assuming equal
variances to test for significant gene expression differences
between differentially methylated gene sets. Spearman’s
correlations between gene expression and methylation
were calculated using R (version: 3.0.2).

Gene ontology (GO) analysis
We performed blastp (e-value 0.1) [44] to human, mouse,
and chicken, and InterProScan [45] on the total great tit
gene set. Out of 16,424 transcripts, 15,186 were assigned to
a total of 247,144 GO-terms (Additional file 1: Table S3).

These results were imported into Blast2GO to assign GO-
terms for each individual gene [46]. We calculated the fold-
change difference in average CpG methylation level be-
tween blood and brain in all three gene features (TSS, GB,
TTS) where the sum of the relative methylation level in
blood and brain is at least 10 % (to exclude hypomethylated
gene features in both tissues) and with at least three CpG
sites covered. We used the upper (hypermethylated) and
lower (hypomethylated) 2.5 % of gene features to define dif-
ferentially methylated regions for gene ontology analysis.
We calculated the average non-CpG methylation in blood
and brain for TSS, GB, and TTS with at least three non-
CpG sites covered. We divided the regions into 40 groups
of percentiles based on their non-CpG methylation levels
(minimum 3 non-CpG sites) using a custom python script
and the upper (40th) and lower (1st) percentiles were
defined as differentially methylated and used for GO-
enrichment analysis. The CytoScape plugin BINGO [47]
was used for GO enrichment analysis using a hypergeo-
metric test to calculate p-values and a Benjamin & Hoch-
berg False Discovery Rate (FDR) correction to calculate q-
values [47]. The GO annotations from Blast2GO were used
as the reference data set. GO-terms with a q-value less than
or equal to 0.05 were considered enriched.

Transposable elements
Transposable elements (TE) were annotated using
RepeatMasker (v4.0.3) [48] with RepBase (update:
20130422) [49]. In total, 26,834 TEs covering 2.1 %
(21.3 Mb) of the genome were used in the analysis with
TEs smaller than 500 bp excluded. We used a sliding
window approach to assess the relative methylation
levels of TEs by divided them into three different re-
gions; the TE, 2 kb upstream and 2 kb downstream.
Each region was subdivided into ten overlapping sliding
windows (20 % of the regions length) with an overlap of
10 %, and average methylation levels were calculated for
each sliding window. We used Tophat version 2.0.10 to
uniquely align the RNA-seq reads (84.3 % overall map-
ping rate) to the reference genome [43] with following
settings: max-multihits 1,–read-realign-edit-dist 0,–
mate-inner-dist 50 and –mate-std-dev 150. TE expres-
sion was assessed using the cufflinks –GTF option with
a GFF containing all identified TEs [43] and –overlap-ra-
dius 5,–intron-overhang-tolerance 5. TE expression
values (FPKM) were extracted from the Cufflinks output.
Spearman’s correlations between TE expression and
methylation were calculated using R (version: 3.0.2).

Validation of RNA-seq via quantitative real-time PCR
(qPCR)
RNA was extracted from hypothalamus tissue of five
great tits collected for another study (Verhagen unpub-
lished.). Punches were taken from the hypothalamus
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region using the method of Perfito et al. 2012 [50]. In
short, brain tissue was cut on a cryostat. 3 mm circular
punches were sampled from the hypothalamus region,
resulting in sampling equal volumes from each individ-
ual brain. Brain punches were immediately added to
1 ml TRIzol Reagent (Thermo Fisher Scientific,
Waltham, USA), homogenized and stored at -80C until
extraction. Total RNA of brain punches was extracted
using the method of TRIzol Reagent. For these five indi-
viduals and the single reference individual used for the
other analyses (for RNA extraction see RNA-seq library
preparation and sequencing) 354 ng of RNA was used to
synthesize first-strand cDNA with QuantiTect Reverse
Transcription Kit (Qiagen, Venlo, The Netherlands) fol-
lowing the standard protocols. RNA concentration was
quantified using a Nanodrop 1000 spectrophotometer
(Thermo Fisher Scientific) and an AATI Fragment Ana-
lyser (Advanced Analytical Technologies, Heidelberg,
Germany). The expression level of 12 genes was further
investigated by qPCR. The qPCR analysis was performed
with PowerUp SYBR Green Master Mix (Thermo Fisher
Scientific) in a C1000 Touch CFX96 (Biorad, Veenen-
daal, the Netherlands) Primers used for qPCR analysis
are given in Additional file 1: Table S5. Great tit GAPDH
(augustus_masked-chr1-processed-gene-22.8) was used
as a standard control. The qPCR program was per-
formed as follows: 50 °C (2 min), 95 °C (2 min), (95 °C
(15 s), 60 °C (1 min))x40 cycles. PCR fragment sizes for
the 12 genes were visualized on 1 % agarose gel to verify
their band size and specificity.

Validation of WGBS via RRBS
For this we used blood samplings of two great tits ori-
ginating from the F2 inter-cross between lines selected
for high and low levels of exploratory behaviour [51].
Blood samples of 10 ul were collected when the birds
were 40 days old and stored in 1 ml Cell Lysis Solution
(Gentra Puregene Kit, Qiagen, USA). Total DNA was
prepared by using 250 μl of the stored blood samples
with 750 μl Cell Lysis Solution (Gentra Puregene Kit,
Qiagen, USA) incubated with proteinase K at 55C over-
night, followed by DNA extraction following the manu-
facturer’s protocol. DNA was stored in DNA Hydration
Solution (Qiagen, USA). Integrity of the DNA as well as
absence of RNA was verified by running and visually
analyzing 1.5 ul of DNA on a 1 % agarose gel next to a
DNA ladder. High-quality genomic DNA (1 μg) was sent
to the Carver High-Throughput DNA Sequencing and
Genotyping Unit (University of Illinois, Urbana, IL,
USA) for generation of RRBS libraries following standard
protocols. Briefly, DNA was restriction digested using
the methyl-insensitive restriction enzyme Mspl, and the
resulting fragments were size-selected (20–200 bp) using
agarose gel electrophoresis. Size-selected DNA was

bisulfite-treated with the EpiTech Bisulfite Kit (Qiagen,
Valencia, CA, USA) and column-purified. The final li-
braries were quantified using Qubit (Life Technologies,
Carlsbad, CA, USA) and the average size was deter-
mined on an Agilent bioanalyzer DNA7500 DNA chip
(Agilent Technologies, Wilmington, DE, USA) and di-
luted to 10 nM. The 10 nM dilution was further quanti-
tated by qPCR on an ABI 1900 to ensure high accuracy
quantification for consistent pooling of barcoded librar-
ies and maximization of the number of clusters in the
Illumina flowcell. RRBS Illumina sequencing was per-
formed on libraries multiplexed and loaded onto 8-lane
flowcells for cluster formation and sequenced on an Illu-
mina HiSeq2500. The libraries were sequenced to a total
read length of 100 bp from one end (single-end sequen-
cing) of the molecules. Raw reads were trimmed using
trim_galore v 0.4.1 and aligned to the great tit reference
genome [6] using BS-Seeker v2.0.10 in –rrbs mode [39]
with Bowtie2 v2.2.7 using the local alignment mode [40].
This resulted in a mappability of 75.43 and 75.94 %.
Methylation levels were determined using the methyla-
tion call scripts from BSseeker2 with a minimum depth
of 10x. 2000 randomly selected CpG sites (coverage >
10x in all samples) ranging in methylation level between
0 and 100 % in the WGBS sample were extracted from
the RRBS samples. Pearson correlations on the 2000 ran-
domly selected CpG sites were calculated using R (ver-
sion: 3.0.2).

Availability of data and materials
The raw methylome data has been deposited into the
NCBI Short Read Archive (SRA) under BioProject
PRJNA208335 in the study SRP055861 and are accessible
via the following URLs: brain: http://www.ncbi.nlm.nih.
gov/sra/?term=SRS964344 blood: http://www.ncbi.nlm.
nih.gov/sra/?term=SRS964345. The raw RRBS data are
accessible via the following URLs: http://www.ncbi.nlm.
nih.gov/sra/?term=SRS1341021 and http://www.ncbi.nlm.
nih.gov/sra/?term=SRS1340777. The raw brain RNA-seq
data is accessible via the URL: http://www.ncbi.nlm.nih.
gov/sra/?term=SRS866013. The version of the genome
used in this paper can be found at GenBank under the
accession GenBank:JRXK01000000. Datasets supporting
the results of this article are also included in the additional
files.

Additional files

Additional file 1: Figure S1. Methylation level distribution for non-CpG
sites (>0 %). Figure S2. non-CpG dinucleotide methylation preferences.
Figure S3. CpG methylation level distribution in genes. Figure S4. non-
CpG methylation level distribution in genes. Figure S5. Average CpG
methylation in different gene partitions. Figure S6. The overlap for brain
differentially hypo-methylated (A) and hyper-methylated (B) gene
features. Figure S7. CpG methylation in relation to gene expression in
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brain. Figure S8. Relative CpG methylation for CGIs divided over three
genomic regional classes. Figure S9. Relationship between non-CpG
methylation level and gene length. Figure S10. Average gene length for
40 groups of percentiles of non-CpG methylated genes. Figure S11.
Non-CpG methylation in relation to gene expression in brain. Figure
S12. CpG methylation level distribution in TEs and their 2 kb flanking
regions. Figure S13. Non-CpG methylation level distribution in TEs and
their 2 kb flanking region. Figure S14. CpG methylation in relation to TE
expression in the brain. Figure S15. Standardized gene expression from
qPCR (Fold Change) as a function of the gene expression calculated from
RNA-seq. Figure S16. Whole genome bisulfite sequencing (WGBS) vs.
Reduced representation bisulfite sequencing (RRBS) in blood. Table S1.
Average and median gene expression in brain for genes associated with
differentially methylated CGIs. Table S2. Average and median gene
expression levels for upper and lower 2.5 % non-CpG methylated genes
(brain). Table S3. Blast2GO gene ontology annotation. Table S4.
Methylation profiles in two blood RRBS samples. Table S5. Primer
information for the genes used for qPCR validation. (DOCX 1636 kb)

Additional file 2: Full GO-enrichment analysis for differentially
methylated gene features: Tables S1 to S6. (XLSX 169 kb)

Additional file 3: Full GO-enrichment analysis for genes associated with
differentially methylated CGIs: Tables S1 to S4. (XLSX 130 kb)

Additional file 4: Full GO-enrichment analysis for upper and lower
non-CpG methylated genes: Tables S1 to S6. (XLSX 126 kb)
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