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Introduction: Creating the Building 
Blocks – Genomics, Transgenesis 

and Cloning

Obtaining a complete draft of the pig genome 
sequence has been central to the develop-
ment and broad acceptance of the pig as a 
biomedical model (Schook et al., 2005a,b). 
The pig genome sequence has recently been 
completed (http://www.ensembl.org/Sus_
scrofa/Info/Index), and the key building 
blocks for full utilization of the pig as a bio-
medical model are now in place: completed 
genome sequence, ability to produce trans-
genic animals and the ability to replicate the 
model through somatic cell cloning (Schook 
et al., 2005b). The emergence of genetic 
information and the development of the 
 necessary tools to target manipulations, in 
combination with the ability to clone pigs, 
provide a new and highly relevant animal 
model. These building blocks have stimulated 

the development of ‘genomic postulates’ 
(Table 17.1) for evaluating animal models 
and, relevant to this chapter, the significance 
of the pig. This chapter was developed to 
provide background on the need for relevant 
animal models and to address each of the 
aspects of the genomic postulates. Owing to 
the overwhelming physiological (Tumbleson 
and Schook, 1996) and genomic similarities 
between pigs and humans (Humphray et al., 
2007), the pig provides a uniquely relevant 
animal model for human disease. In addition, 
a recent CRISP (Computer Retrieval of 
Information on Scientific Projects) search 
(1999–2003) indicated that the US National 
Institutes of Health (NIH, which has over 
20 institutes and centres) sponsored research 
that supported 2400 separate grants that uti-
lized the pig. Thus, a broad foundation sup-
porting the pig as a model in biomedical 
research already exists from which to build 
future programmes. There is also growing 
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interest within the biomedical community 
with respect to the utilization of pigs in bioen-
gineering, imaging and behavioural studies.

The Animal Model Concept

The use of animals to study human physiology 
and anatomy can be traced back to the second 
century common era (CME) in which Galen, a 
Greek physician and philosopher, completed 
research studies on apes and pigs (Galen, 1586) 
(Fig. 17.1). Galen incorrectly assumed that all 
extracted information derived from his use of 
animals could be directly applied to humans. It 
was not, however, until the 16th century CME 
that his error was initially recognized (Nomura 

et al., 1987), when Bernard proposed the use 
of chemical and physical induction of disease in 
animals, thus becoming the first advocate for 
creating ‘induced animal models’ for biomedi-
cal research. At the turn of the 20th century 
came the development of infectious disease 
animal models and their use for evaluating anti-
bacterial drugs, and the introduction of the 
‘germ theory of disease’ (Koch, 1884; Fanning, 
1908). The end of the 20th century and the 
beginning of the 21st century realized the abil-
ity to utilize naturally occurring models resulting 
from spontaneous mutations – severe com-
bined immunodeficiency (SCID) or nude mice – 
and from genetically modified  animal genomes 
through transgenesis or site-directed homolo-
gous recombination. Linkage with the ability to 
clone animals, either through the utilization of 
embryonic stem cells or somatic cell nuclear 
transfer, provided even further ability to use ani-
mals which have phenotypic characteristics 
close to humans as relevant animal models for 
dissecting human disease. Finally, the emer-
gence of the whole genome sequencing of ani-
mals with many physiological similarities to the 
human, such as the pig, supports the ability to 
actually create a large animal model that is 

Table 17.1. Genomic postulates, adapted from 
Koch’s postulates.

1. Isolate and propagate causal gene from animal
2. Characterize (manipulate) gene in vitro
3.  Reintroduce putative gene (create transgenic 

animal) to test causality
4.  Demonstration of causal relationship through 

induced phenotype

Fig. 17.1. Timeline of animal models. SCID, severe combined immunodeficiency. Sources: aGalen, 1586; 
bFanning, 1908; cKoch, 1884; dDunn, 1965; eMahley et al., 1975; fPantelouris, 1968; gHardy et al., 1981; 
hBrinster et al., 1984; iWaters et al., 1998; jCooper et al., 2002; kLaske et al., 2005; lAdam et al., 2007.

Galen develops first
animal model concepta

Pig used as
xenotransplantation modelj

Castle initiates genetic
studies in miced

Nude/SCID mouse
developedf

Mouse tumour models
developedh

Pig used as ex vivo
heart modelk

20072005200219981984199119681959190218841586

Germ theory proposedb,c Feline leukemia
studiedg

Mahley develops model of
atherosclerosis in the pige

Prostate cancer modelled
in the dogi

Solid tumours genetically-
engineered in the pigl
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genetically and phenotypically similar to humans 
in terms of disease attributes.

Animal models represent important tools 
for investigating the pathogenesis of human dis-
ease and developing appropriate treatment 
strategies. The coupling of genomic information 
(genome sequence, gene expression profiling 
and proteomics) with enabling technologies 
(transgenesis and cloning) has revolutionized the 
development of human biomedical animal mod-
els. Traditionally, the mouse has been a powerful 
experimental system for understanding the com-
plexity of cancer, diabetes and cardiovascular 
disease, among others. The dog is also consid-
ered a comparable model to human disease 
because of its similarities to human anatomy 
and physiology, particularly with respect to the 
cardiovascular, urogenital, nervous and muscu-
loskeletal systems. As such, it has long been 
used as a model in drug discovery and develop-
ment research. Human disease may best be 
recapitulated in a large mammal such as the pig. 
The pig is often the primary biomedical model 
for a number of diseases, for surgical research 
and for organ transplantation owing to the simi-
larity in size, anatomy and physiology between 
pigs and humans (Swanson et al., 2004). Animal 
models, regardless of species, can be grouped 
into one of the following five categories: 

(i)  spontaneous models; (ii) genetically modified 
models; (iii) induced or experimental models; 
(iv) negative models; and (v) orphan models 
(Table 17.2).

One approach to studying human disease 
is to characterize a naturally occurring disease in 
an animal that corresponds to a human disease. 
The best-known spontaneous model is the ath-
ymic nude mouse, the use of which represented 
a turning point in the study of heterotrans-
planted tumours and enabled the first descrip-
tion of natural killer cells (Pantelouris, 1968). 
Genetically engineered models were created 
that harboured genetic changes commonly 
found in human disease. The first transgenic 
mouse tumour model was established by over-
expression of viral and cellular oncogenes in 
specific tissues (Brinster et al., 1984; Stewart 
et al., 1984; Adams et al., 1985; Hanahan, 
1989). Induced models involve healthy animals 
in which the condition to be studied is experi-
mentally induced through surgical modifications, 
genetic modifications, or chemical application – 
demonstrated in 1918 when Yamagiwa and 
Ichikawa showed that coal tar experimentally 
applied to rabbit ears caused skin carcinomas 
(Yamagiwa and Ichikawa, 1918). More recently, 
considerable insight has been gained into 
the strengths and weaknesses of toxicity and 

Table 17.2. Advantages and disadvantages of animal model types.

Model type Advantages Disadvantages Examples

Spontaneous Similar disease 
phenotype to 
humans

Long latency Nude/severe combined immunodeficiency 
(SCID) mice (Pantelouris, 1968)

Not genetically 
defined

Canine haemophilia (Giles, 1982); canine 
prostate cancer (Waters et al., 1998)

Genetically 
modified

Defined genetic 
background

Phenotypic 
expression of 
genes can differ

Porcine tumour model (Adam, 2007)

Transgenesis and 
homologous 
recombination

Mouse tumour model (Brinster et al., 
1984)

Induced or 
experimental

Gene expression 
controlled through 
diet or inducers

Not predictive of 
therapeutic 
success

Atherosclerosis (Mahley et al, 1975; 
Bell and Gerrity, 1992; Dixon et al. 
1999)

Rapid disease onset Obesity (Spurlock and Gabler 2008)
Free choice of species Diabetes (Mordes and Rossini, 1981; Larsen 

et al., 2002; Larsen and Rolin 2004)
Orphan Useful for evaluation of 

chemical/radiological 
treatments

Do not faithfully 
mimic human 
disease

Feline leukaemia (Hardy et al., 1981); 
bovine leukosis (Gillet et al., 2007)
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carcinogenicity studies in laboratory rats and 
mice. Infectious disease models are often 
restricted to a limited number of susceptible spe-
cies, and the remaining unresponsive species 
are considered negative models because they do 
not develop the disease when exposed to a par-
ticular stimulus (Hau, 2008). The main applica-
tion of negative models is to gain insight into the 
physiological basis of disease resistance. There 
are functional disorders present in non-human 
species that have not yet been described in 
humans. Often, a similar disease will be identi-
fied in a human that was previously described in 
animals. These animals represent ‘orphan mod-
els’ for that particular disease as no human 
equivalent has been identified. Feline leukaemia 
(FeLV) represents a naturally occurring disease 
in domestic cats that is not transmissible to 
humans; like lymphoma in humans, lymphoma 
induced by FeLV in cats is characterized by 
immunosuppression.

The incidence of chronic disease due to 
complex genetic and environmental interac-
tions, however, has continued to increase dur-
ing the past century. Understanding human 
disease is difficult owing to the complexity of 
genetics and lifestyle interactions, and the high 
cost associated with developing therapeutics. 
As such, appropriate biomedical models are 
essential because most medical knowledge, 
treatment regimes and medical device develop-
ments are based on robust animal models. As 
genomic and bioinformatic technologies con-
tinue to advance, our knowledge of animal 
models will increase, thereby refining our 
choice of models and enabling the develop-
ment of more applicable models. Animal mod-
els are essential tools for studying gene–gene 
interactions and gene–environment effects, 
and for preclinical testing of therapeutic inter-
ventions. Given that mice, the most common 
animal model, frequently do not faithfully reca-
pitulate human disease, pigs will continue to 
serve as important biomedical models.

Utilizing the Pig to Improve 
Human Health

During its multiple domestication events, the pig 
has undergone intense selection pressures for 

various phenotypes throughout the world (Chen 
et al., 2007). First domesticated in Asia from 
the wild boar, germplasm was quickly moved 
around the world by explorers and used for food 
and products. Intense selection and breeding 
has provided distinct phenotypes differing in 
metabolism, fecundity, disease resistance and 
meat products (Schook et al., 2005b; Schook 
2007). Such selective pressures have resulted in 
differentiated subpopulations and phenotypes 
extremely relevant to current and future human 
health research. The selection of ‘mini’ and 
‘micro’ pigs for size, independently by investiga-
tors throughout the world, attests to the global 
relevance of this experimental animal in bio-
medical research. The porcine model is also rel-
evant to human health research priorities such 
as obesity, female health, cardiovascular dis-
ease, nutritional studies (as the pig is an omni-
vore), and communicable diseases (reviewed in 
Tumbleson and Schook, 1996). The pig pro-
vides a valuable biological model in these prior-
ity areas because of the vast amount of research 
that has been conducted on the genetic and 
environmental interactions associated with com-
plex, polygenic physiological traits.

Informing Human Physiology: 
Similarities between Pig and Human 

Phenotypes

Animal physiology has significantly contrib-
uted to the basic understanding of human 
development and physiology related to disease 
(Table 17.3). For example, classical endo-
crinology studies in pigs has led to the current 
understanding of several reproductive and 
pituitary hormones, most notably the compo-
sition of insulin, which was first determined for 
porcine insulin and was used for several dec-
ades to treat human diabetes (Rohrer et al., 
2003). The porcine biomedical model has 
provided a fundamental research platform for 
developing human reproductive techniques 
and for studying reproductive diseases. 
Ongoing research using the pig to study can-
cer and diabetes is contributing greatly to our 
understanding of these diseases and is further 
expanded upon in this chapter (Table 17.3). 
The pig has many similarities in structure and 
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Table 17.3. Validated swine biomedical models.

Type of investigation Model Reference

Heart physiology Stent design, tissue engineering 
of blood vessels

Bedoya et al., 2006; Gyöngyösi et al., 2006

Atherosclerosis Turk and Laughlin, 2004; Turk et al., 2005
Myocardial infarction Ambrose, 2006; Boluyt et al., 2007
Ex vivo heart model Laske et al., 2005
Emergency procedures Casas et al., 2005; Geddes et al., 2006

Reproductive 
function

Maternal–fetal interactions Green et al., 2006

Embryo development Sun and Nagai, 2003; Rohrer et al., 2006
Sperm Strzezek et al., 2005; Lavitrano et al., 2006

Transplantation Cell and organ transplants Larsen and Rolin, 2004; Street et al., 2004
Xenotransplantation Cooper et al., 2002; Ibrahim et al., 2006

Skin physiology Percutaneous permeation Simon and Maibach, 2000; Dalton et al., 2006
Contact dermatitis Stuetz et al., 2006
Skin culture model Huang et al., 2006
Melanoma Geffrotin et al., 2004; Zhi-Qiang et al., 2007

Brain Stroke Imai et al., 2006
AIDS, dementia Tambuyzer and Nouwen, 2005
Drug-binding sites and 

interactions
Minuzzi, et al., 2005

Gut physiology and 
nutrition

Gut structure and intestinal 
metabolism

Eubanks et al., 2006; Qiu et al., 2006

Obesity Brambilla and Cantafora, 2004
Probiotics and gut physiology Reid et al., 2003; Domeneghini et al., 2006
Food allergies Bailey et al., 2005; McClain and Bannon, 

2006
Biochemical Response to injury Schmitt and Snedecor, 2006

Imaging techniques Ellner et al., 2004; Goldberg et al., 2004
Osteoporosis, bone density 

analysis
Teo et al., 2006

Tissue engineering Cartilage repair Chang et al., 2006
Spinal fusion Drespe et al., 2005
Organ-specific gene delivery Kawashita et al., 2005
Cataract repair Lassota et al., 2006; van Kooten et al., 2006
Polymer scaffolds Brown et al., 2006; Moroni et al., 2006
Tooth development Hu et al., 2005

Respiratory 
function

Neonatal respiratory distress Miller et al., 2006

Asthma Turner et al., 2002; Watremez et al., 2003
Infectious disease Therapeutics (vaccines, 

biotherapeutics, drug therapies)
González et al., 2004; Cheetham et al., 2006

Developmental interactions Hasslung et al., 2005; Butler et al., 2006
Mucosal tissue responses Elahi et al., 2005; Dawson et al., 2005; 

Pomeranz et al., 2005; Dvorak et al., 2006
Host response Houdebine, 2005

function to humans, including size, feeding 
patterns, digestive physiology, dietary habits, 
kidney structure and function, pulmonary vas-
cular bed structure, propensity to obesity, res-
piratory rates and social behaviours (Tumbleson 
and Schook, 1996). Because the pig is an 

omnivore, it provides an adaptable model to 
evaluate chronic and acute exposures to xeno-
biotics such as alcohol, tobacco, feed additives 
and environmental pollutants (Schook, 2007). 
Pigs have been used as models to evaluate 
alcoholism, total parenteral nutrition, organ 
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transplantation, atherosclerosis, exercise, 
hypertension, melanoma, nephropathy, der-
mal healing, shock and degenerative retinal 
diseases.

A severe shortage of organs and tissues for 
transplantation has also stimulated increased 
consideration of pigs as a potential solution, 
particularly with the recent ability to genetically 
modify pigs to overcome acute rejection (Lai 
et al., 2002). Targets for the genetic modifica-
tion of pigs for xenotransplantation have thus 
far emphasized reducing the immunogenicity of 
porcine cells and tissues, and preventing rejec-
tion after transplantation of porcine tissue. 
Acute rejection is mediated through preformed 
antibodies against galactosyl-a-1,3-galactose 
epitopes expressed on the surface of pig cells. 
Transgenic pigs have been developed that 
express regulators of the complement cascade, 
including CD55, CD59 and CD46, which sup-
press the attack on donor tissues (Bucher, et al., 
2005; Cox and Zhong, 2005; Houdebine, 
2005). Another approach has focused on elimi-
nating the galactosyl-a-1,3-galactose antigen 
from the surface of donor cells. Researchers 
have generated pigs without the gene encoding 
a-1,3-galactosyltransferase (Zhong, 2007). 
This was accomplished by the serial knockout 
of the gene in cultured pig fibroblasts, followed 
by somatic cell nuclear transfer to generate 
pigs. The convergence of transgenic and clon-
ing techniques has enabled multilayered genetic 
modifications to be made in a single animal.

Breeding among multiple existing trans-
genic lines and introducing new genes by 
somatic cell nuclear transfer can be used in 
combination to overcome the various stages of 
xenograft rejection associated with xenotrans-
plantation (Matsunari and Nagashima, 2009). 
The necessary genetic modifications are 
dependent on the specific transplant proce-
dure. For example, the removal of the aGal 
epitope to prevent antibody reactivity and the 
insertion of complement regulators would 
increase the success of vascularized grafts, 
while pancreatic islet grafts would require the 
insertion of complement regulators, anticoag-
ulants to prevent an inflammatory reaction 
and an anti-apoptotic gene to counteract 
ischaemia and reperfusion injuries (d’Apice 
and Cowan, 2009). Using these approaches, 
polytransgenic and a-1,3GalT-KO pigs have 

been produced, but further research is needed 
to created an efficient model (Rood et al., 
2005; Tseng et al., 2005; Yamada et al., 
2005; Cooper et al., 2007).

Phenotypic research utilizing unique pig 
breeds has identified genetically controlled dif-
ferences in fat deposition (Rothschild and 
Ruvinsky, 1998; Malek et al., 2001a,b). Such 
information provides the basis for developing 
an experimental model for understanding obes-
ity and for the development of nutritional inter-
ventions from prenatal nutrition to aged 
cohorts. Porcine resource populations have 
been selected for phenotypic variation in bone 
density (osteoporosis), sex-expressed nutri-
tional and reproductive characteristics, and 
growth and development (embryonic, prenatal 
and postnatal). Using comparative genomics, 
new models have been identified to study how 
metabolism is linked to obesity-induced diabe-
tes (Milan et al., 2000). The porcine model will 
also be invaluable to study host–pathogen 
interactions for food safety (i.e. Salmonella), 
potential biological warfare agents (African 
swine fever; foot-and-mouth disease) and 
agents that affect food security and human 
health (i.e. porcine endogenous retroviruses 
and other zoonotic diseases).

Linking Genotypes and Phenotypes 
Relevant to Human Health

The discovery that mammalian genomes prob-
ably contain only 20,000–30,000 genes 
 suggests that alternative transcripts and post-
translational modifications must play a greater 
role in phenotypic expression than previously 
appreciated. It is also expected that single gene 
products affect different traits or disease states 
depending on the temporal and spatial pres-
ence of gene products. As an omnivore, the 
pig is prone to many of the same dietary health 
problems as humans. Depending on diet and 
genetics, pigs can suffer from hypertension, 
hypercholesterolaemia, dyslipidaemia, insulin 
resistance and atherosclerosis. The pig has 
mutations in similar genes affecting these met-
abolic disorders (i.e. ApoB and LDLR for 
hypercholesterolemia) (Ajiello et al., 1994; 
Hasler-Rapacz et al., 1998). Piglets are the 
preferred model organism to develop human 
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infant formula as their nutritional needs are 
comparable to those of human infants. Because 
of their similar digestive tracts, pigs are also 
susceptible to comparable enteric food-borne 
pathogens (i.e. Salmonella, enterohaemor-
rhagic Escherichia coli) and pig intestinal lin-
ings are used for in vitro studies of interactions 
with the intestine and these pathogens. Pigs 
are also susceptible to gastric ulcers that appar-
ently are induced by diet and stress (Engstrand 
et al., 1990). Additional anatomical similarities 
with humans include renal morphology, eye 
structure, skin and tooth development. The pig 
is also one of few animals that will voluntarily 
eat to obesity, as well as being susceptible to 
alcoholism.

There are two reasons for research to 
investigate obesity-related genes in the pig. 
First, as already mentioned, the pig is a more 
realistic model organism for human obesity 
owing to its physiological similarities to humans 
(Tumbleson and Schook, 1996). As the pig is a 
true omnivore, the molecular basis and diges-
tive tract anatomy of the pig is much closer to 
that of humans than any laboratory animal 
species, as identified by significant DNA poly-
morphisms of obesity-related genes in the pig 
genome that might provide useful targets for 
the genetic study of human obesity. The sec-
ond reason is that the genetic components of 
human obesity can play important roles in pig 
performance traits such as fatness, growth rate 
and feed intake.

Surrogate Systems for Human 
Experimentation

The domesticated pig has provided numerous 
surrogate experimental models for biomedical 
research. There has been a long tradition of 
using abattoir tissues for the purification of 
enzymes and the elucidation of metabolic path-
ways. These tissues have also served as initial 
biologicals, with bovine and porcine insulin 
providing pre-recombinant DNA therapeutics 
and purified enzymes used to determine crys-
talline structure. Porcine gamete biology has 
played a critical role in our understanding of 
stem cells and in vitro fertilization (Wu et al., 
2001; Yin et al., 2002). Because of the wealth 

of biological information derived from the por-
cine system, it has increasingly become impor-
tant for studying epigenetic effects, as well as 
unravelling genomic imprinting. The demon-
stration that pigs can be cloned using in vitro 
cloning systems provides an invaluable tech-
nology platform for developing relevant clones 
of genetic models for biomedical research 
(Betthauser et al., 2000; see Chapter 11). In 
addition, a major obstacle for producing cloned 
genetically modified pigs has been overcome 
(Lai et al., 2002). Investigators have created a 
nuclear transfer technology using clonal fetal 
fibroblasts as nuclear donors for the production 
of gene-specific knockouts. This technology 
platform has significant applications beyond 
xenotransplantation, and the availability of 
genomic sequences will facilitate the broader 
utility of the pig as a surrogate system for 
human experimentation.

The phenotypic diversity of hundreds of 
porcine breeds distributed throughout the 
world provides a tremendous resource for 
‘comparative phenomics’, the application of 
comparative genomic principles to the discov-
ery of new genes underlying diverse pheno-
types. In only a few thousand years, selective 
breeding has produced pig breeds that thrive in 
diverse environments (e.g. high altitude versus 
tropical), convert energy to muscle mass effi-
ciently and rapidly, and tolerate specific patho-
gens. There can be little doubt that the 
understanding of what makes porcine breeds 
different with respect to reproductive effi-
ciency, bone structure, growth rates, fat depo-
sition, altitude or heat tolerance and resistance 
to specific pathogens will be important to 
understanding basic biological processes 
important to human health (see Chapter 18).

Extrapolation from Animals 
to Humans

The selection of an animal model depends on a 
number of factors relating to the hypothesis to 
be tested. Often a number of different models 
may advantageously be used to study a biologi-
cal phenomenon associated with a human dis-
ease. For diseases such as cancer, there are a 
wide range of well-described models available, 
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both induced and spontaneous, in a variety of 
species. The key factor in using animal models 
for studying disease is that the results can be 
extrapolated of the humans. Animal models of 
human disease are deemed relevant only if they 
are useful in recapitulating disease pathogenesis 
and assisting in the development of approaches 
to intervention or therapy (Hau, 2008). Thus, 
to ensure full utilization, a model needs to reli-
ably mimic the normal anatomy and physiology 
of human organs and tissues of interest, as well 
as accurately reflect the morphological and bio-
chemical aspects of disease pathogenesis.

The rationale behind extrapolating results 
from an animal model to humans is primarily 
based on the similarity between morphological 
structures and physiological processes. For 
example, an animal model of cancer should ide-
ally undergo tumour development and progres-
sion in a similar fashion to humans. While many 
animals are more or less similar to humans in 
regard to biological characteristics, there are 
prominent differences in body size between spe-
cies, which affects their appropriateness as a 
model for certain experiments. The validity of 
extrapolation may be further complicated by the 
prevalence of disease in humans, with certain 
sectors of the population having a higher inci-
dence of a type of disease over another owing 
to genetic and environmental influences.

Traditionally, animal models were used to 
identify the genes responsible for a disease. 
Trends in the use of animal models are chang-
ing as new technologies are enabling research-
ers to use animal models to study the effects of 
changes in genetic pathways. Developments 
in the fields of genomics, proteomics, biotech-
nology and bioinformatics are changing the 
nature of biomedical research. The Human 
Genome Project is providing genetic informa-
tion, not only from humans, but also from ani-
mals traditionally used as models. Increased 
insight into genetic pathways and gene– 
environment interactions that are involved in 
the aetiology of complex human genetic dis-
ease are providing the knowledge required to 
select better animal models. This knowledge 
can be applied to produce specific transgenic 
animals or knockouts, which better mimic the 
physiological complexity of human disease 
than existing models. New, more precise mod-
els for the development of therapeutics can be 

created. Animal models are essential tools for 
studying gene–gene interactions and gene–
environment effects, and for preclinical testing 
of therapeutic interventions.

An important theme in toxicology research 
is the search for and the assessment of animal 
models that are predictive for adverse effects of 
pharmaceuticals in humans. This process is 
based on the assumption that the current 
choice of animal models is truly predictive of a 
human response to a treatment. To validate 
this assumption, a large multinational pharma-
ceutical company survey analysed data com-
piled from 150 compounds to determine the 
concordance of the toxicity of pharmaceuticals 
observed in humans with that observed in 
experimental animal models (Olson et al., 
2000). The concordance rate was found to be 
71% for comparable target organs in rodent 
and non-rodent species, with non-rodents 
alone being predictive for 63% (primarily the 
dog) of human toxicity and rodents alone for 
43% (primarily the rat). The highest incidence 
of overall concordance was seen in haemato-
logical, gastrointestinal and cardiovascular 
human toxicities, and the least was seen in 
cutaneous human toxicity. The results of this 
survey support the value of in vivo toxicology 
studies to predict for human toxicity associated 
with pharmaceuticals, and indicate that data 
collected from experiments in animals can be 
extrapolated to humans. It can also be con-
cluded that the type of animal model chosen 
must be carefully evaluated. Traditionally, toxi-
cology studies utilize rat and dog models, with-
out considering whether there is an alternative 
species that might be more appropriate for 
testing a specific compound. While no animal 
model can completely recapitulate the effects 
of every drug administered to humans, previ-
ous research has shown that large animals are 
better preclinical models for drug toxicity than 
rodents (Olson et al., 2000).

Modelling Human Disease in the Pig

The pig has been used as an important large 
animal model for human disease for decades. 
The animal has a long lifespan of 10–15 years 
(Hau and Van Hoosier, 2003), so disease 
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 progression is more similar to that seen in 
humans. Furthermore, as already discussed, 
the pig shares anatomical and physiological 
characteristics with humans that make it a 
unique and viable model for biomedical research 
(Tumbleson and Schook, 1996). Because of 
the similarity in body mass of pigs to humans, 
the pig has become a model of choice for tissue 
engineering and imaging studies (Lunney, 
2007). Their large size also makes them ideal 
models for study in such medical fields as sur-
gery, imaging, chemotherapy and radiation, 
which cannot be accurately tested in small ani-
mal models.

Their cardiovascular anatomy and physiol-
ogy, in combination with the pig’s response to 
atherogenic diets, have made them a univer-
sally standard model for the study of athero-
sclerosis, myocardial infarction and general 
cardiovascular studies. Their gastrointestinal 
anatomy has some significant differences from 
that of humans; however, the physiology of 
their digestive processes has made them a valu-
able model for digestive diseases. The urinary 
system of swine is similar to humans in many 
ways, especially in the anatomy and function 
of the kidneys (Swindle and Smith, 2000). 
Swine are also a standard model for skin and 
reconstructive surgical procedures, and have 
been developed as models of transdermal tox-
icity. The anatomy and physiology of organs 
such as the liver, pancreas, kidney and heart 
have also made this species the primary spe-
cies of interest as organ donors for xenograft 
procedures (Swindle and Smith, 2000).

In addition, the ability to use pigs from the 
same litter, and cloned or transgenic pigs, facili-
tates genetic mapping (Lunney, 2007) and min-
imizes immunological differences between 
animals in transplant studies. The availability of 
numerous well-defined cell lines from a broad 
range of tissues will assist in studies of gene 
expression and drug susceptibility testing. 
Sequencing of the swine genome (Schook et al., 
2005a) has provided increasingly advanced 
genetic and proteomic tools for pigs. Many of 
these studies employ genomic approaches, as in 
heart, transplantation and melanoma models. 
The pig genome has a high sequence homology 
to humans, 60%, compared with a 40% 
sequence homology of rodents to humans 
(Thomas et al., 2003; Humphray et al., 2007), 
and the pig chromosomal structure has a higher 

similarity to humans than those of the mouse, 
rat, dog, cat or horse, or cattle (Meyers et al., 
2005; Murphy et al., 2005). Each model will be 
affected by the availability of the functional 
genomic tools, and swine genome sequence 
and maps (Rothschild et al., 2007; Tuggle 
et al., 2007).

Creating a Porcine Cancer Model

The pig is an attractive model to study cancer 
biology and to help close the gap between basic 
science and patient benefit. Compared with 
rodents, the pig is metabolizes drugs and under-
goes tumorigenesis in a manner analogous to 
humans. Like humans, the incidence of cancer 
in pigs is rare, with a prevalence of childhood 
cancer – Wilm’s tumours in young pigs (Anderson 
and Jarrett, 1968), and a broader spectrum of 
cancers in adults (Brown and Johnson, 1970). 
Furthermore, the pig provides an ideal system 
for preclincial studies of imaging, as well as of 
hyperthermia, radiation or photodynamic ther-
apy of tumours. It is almost impossible to do 
intensity-modulated radiation therapy on mice 
owing to the small tumour size and the energy of 
the clinical accelerator. High-resolution intensity 
treatment in other rodents is hindered by the 
same problems, and devices used for hyperther-
mia treatment of tumours cannot be scaled down 
to be useful for studies in rodents.

Parallels in cancer biology between pigs 
and humans extend to the molecular level, as 
demonstrated by the reduced number of genes 
required to convert human and pig cells to a 
tumorigenic state compared with mouse cells 
(Kendall et al., 2005). Additionally, telomerase 
is suppressed in a number of tissues and reacti-
vated during cancer in both humans and pigs 
(Pathak et al., 2000; Stewart and Weinberg, 
2000), indicating that there are also similarities 
in the process of tumorigenesis between the 
species. The genomic sequence homology 
between pigs and humans is also very high 
(Swanson et al., 2004), and the porcine preg-
nane X receptor protein that regulates p450 
cytochrome CYP3A, which metabolizes almost 
half of prescription drugs in humans, is more 
similar to that of humans than, for example, 
mice (Xie and Evans, 2002; Pollock et al., 
2007).
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It has been demonstrated that the enforced 
expression of transgenes that mimic genetic 
changes occurring in many types of human 
cancers can drive normal primary porcine 
cells to a tumorigenic state. Specifically, co- 
expression of human TERT (hTERT), p53DD 
(a dominant-negative truncation mutant of 
p53), cyclin D1, CDK4R24C (an activated ver-
sion of a cyclin-dependent kinase 4 mutant), 
c-MycT58A (a stabilized version of the oncogene 
c-Myc) and H-RasG12V (a constitutively active 
form of Ras GTPase) have the ability to drive 
porcine fibroblasts to form tumours when 
explanted into immunocompromised pigs at 
different anatomical sites (Adam et al., 2007). 
These same genetic changes drive human kid-
ney cells, mammary epithelial cells and myob-
lasts to a tumorigenic state (Kendall et al., 
2005) indicating that tumorigenesis in pigs is 
similar to the process in humans. Genetically 
engineered porcine tumour cells provided the 
first method of inducing tumours in a large ani-
mal, and hence it is possible to tailor-make 
tumours of a defined background using the pig. 
Although this model is limited because the ani-
mals need to be immunosuppressed for tumours 
to grow (akin to xenograft mouse models), pigs 
nevertheless have a number of clear advantages 
that make them ideal for preclinical studies of 
human cancers. The resultant tumours in the 
pigs could be grown to very large sizes, ideal for 
a number of preclinical applications. This model 
can be exploited in different cell types to gener-
ate many different types of tumours potentially 
anywhere in the body (Table 17.4).

Emerging Cancer Models Utilizing 
the Pig Phenotype

Basal cell carcinoma is the most prevalent human 
cancer, with over 750,000 cancers being diag-
nosed yearly in the USA alone, yet animal mod-
els remain limiting owing to molecular and skin 

type differences between humans and mice. 
While mouse skin and human skin share many 
similar features, there are also major differences, 
which may contribute to the differences in skin 
tumorigenesis with respect to tumour type and 
mechanism between the two species. In humans, 
the three main types of skin cancer are: basal cell 
carcinomas (BCC), squamous cell carcinomas 
(SCC) and cutaneous melanomas (CM), with 
BCC being the most common of the three, rep-
resenting approximately 70% of all human skin 
cancers (de Gruijl et al., 2001). In contrast, mice 
do not develop BCC; the predominant malig-
nant tumour type in mice is SCC (Peto et al., 
1975; Bogovski, 1994). In addition, oncogenic 
Ras has an essential role in mouse skin tumori-
genesis while it appears to have only a minor 
role in human skin cancer (Ananthaswamy and 
Pierceall, 1990; Pierceall et al., 1991a,b). Thus, 
mice are not always ideal in vivo models for the 
study of human skin cancer.

Among experimental animals, porcine 
skin is most similar to human skin and has been 
used extensively as a model of human wound 
healing (Lunney, 2007). More specifically, the 
porcine integument is morphologically 
(Montagna and Yun, 1964; Meyer et al., 1978; 
Monteiro-Riviere and Stromberg, 1985; 
Monteiro-Riviere, 1986), histochemically 
(Meyer et al., 1986; Rigal et al., 1991; Woolina 
et al., 1991), biochemically and biophysically 
similar to human skin. As such, the pig has 
been utilized as a model for drug toxicity and 
percutaneous absorption studies. Pig skin 
resembles human skin in having a sparse hair 
coat, a relatively thick epidermis, and similar 
epidermal turnover kinetics, lipid composition, 
carbohydrate biochemistry, lipid biophysical 
properties and arrangement of dermal collagen 
and elastic fibres (Weinstein, 1966; Forbes, 
1967; Montagna, 1967; Meyer et al., 1981; 
Meyer et al., 1982). Reported differences in 
pigs include a unique interfollicular muscle that 
spans the triad of the hair follicle (Stromberg 

Table 17.4. Porcine cell transformation.

Embryonic layer Cell type transformed Experimental model Tumour type induced

Endoderm Keratinocytes In vitro cell transformation N/A
Ectoderm Fibroblasts; mammary, 

kidney and testes cells
In vitro cell transformation Squamous cell carcinoma

Mesoderm T cells Live virus injection T cell lymphoma
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et al., 1981), the presence of apocrine sweat 
glands only on the body surface (Montagna and 
Yun, 1964; Monteiro-Riviere and Stromberg, 
1985), and a thicker stratum corneum (Meyer 
et al., 1978; Bronaugh et al., 1982). With 
regard to biochemical similarities between pigs 
and humans, for example, conservation of the 
matrix methalloprotease genes MMP1 and 
MMP9 is greater between humans and pigs 
(89% and 85%, respectively) than between 
humans and mice (80% and 78%, respectively, 
based on the HomoloGene NCBI (US National 
Center for Biotechnology Information) 
database).

As discussed previously, it has been dem-
onstrated that porcine fibroblasts can be trans-
formed in vitro and explanted into the pig to 
form tumours. Fibroblasts, however, are the pri-
marily transformed cell type in less than 1% of 
human malignancies (Khavari, 2006). BCC, the 
most common cancer in the USA, and SCC, 
the second most common cancer in the USA, 
arise from keratinocytes (Khavari, 2006). 
Isolated porcine keratinocytes, the target cell 
population, can be transformed following the 
same procedure. Specifically, the co-expression 
of hTERT, p53DD, cyclin D1, CDK4R24C, 
c-MycT58A and H-RasG12V is sufficient to drive 
porcine keratinocytes to form tumours when 
injected subcutaneously into immunocompro-
mised mice. Further research has demonstrated 
that expression of only cyclin D1, CDK4R24C, 
H-RasG12V and c-MycT58A was sufficient to trans-
form both porcine fibroblasts and keratinocytes 
to a tumorigenic state, indicating that fewer 
genes are required for successful porcine cell 
transformation and subsequent tumour forma-
tion (K.N. Kuzmuk, 2009, unpublished results).

The establishment of tumours using the 
pig as a model is possible, provided the animals 
remain on immunosuppressive therapy. When 
treatment with immunosuppressive drugs is 
halted, tumours, regardless of size, regress 
owing to an overwhelming host immune reac-
tion to the tumour cells. Research using retrovi-
ruses as vectors is being conducted to determine 
whether this approach eliminates the need for 
immunosuppressed animals. It is theorized that 
the manipulation of cells in tissue culture during 
the transformation process makes the cells 
immunogenic. It has been demonstrated that 
the injection of a virus encoding mutated H-Ras 

directly into the mammary fat pads of wild-type 
rats is tumorigenic (McFarlin and Gould, 2003; 
McFarlin et al., 2003). For that reason, the 
direct in vivo injection of retroviruses contain-
ing the transgenes required for porcine cell 
transformation in vitro would be tumorigenic in 
immunocompetent pigs. To test this hypothe-
sis, viruses expressing the transgenes used to 
transform both the porcine fibroblasts and 
keratinocytes (cyclin D1, CDK4R24C, H-RasG12V 
and c-MycT58A) were injected directly into the 
pig. Direct retroviral injection produced a low 
frequency of lymphoma of T cell origin (K.N. 
Kuzmuk, 2009, unpublished results).

Needs and Opportunities 
for Expanding the Use 

of Pig Biomedical Models

Novel approaches to harvesting genomic infor-
mation to target genetic manipulations coupled 
with cloning have been identified as targets for 
further development (Schook et al., 2005b). 
Emerging technologies such as recombineer-
ing and gene trapping combined with relevant, 
standardized cell lines of targeted modifications 
could be used for cloning specific pigs for a 
given human disease. The National Swine 
Resource and Research Center (NSRRC) at the 
University of Missouri (http://www.nsrrc.mis-
souri.edu) provides essential support for creat-
ing genetic pig models of human diseases. 
Specifically, NSRRC has established significant 
resources to assist researchers in creating 
transgenic pigs, as well as to support the distri-
bution of created models to investigators, thus, 
providing a mechanism for generating and dis-
tributing the ‘gold standard’ model for specific 
diseases or phenotypes.

Finally, the pig will continue to grow as 
the biomedical model of choice in bioengi-
neering and experimental surgery, and in zoo-
nosis research related to the emergence of 
new diseases such as swine influenza. With 
respect to bioengineering and experimental 
surgery, the growing popularity of the pig ver-
sus the dog has continued to rise, and the pig 
is now the most common large laboratory ani-
mal species. The number of pigs used in 2002 
in registered research facilities as reported to 
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the US Department of Agriculture (USDA) 
was over 68,400, whereas the number of 
dogs declined from 201,000 in 1984 to 
68,200 in 2002 (http://www.aphis.usda.
gov/publications). Completion of the pig 
genome sequencing will only accelerate the 
popularity and value of swine in biomedical 
research. The pig is currently being developed 
as a model to understand the pathogenesis of 
and immunity to human viral pathogens such 
as rotavirus, calicivirus and coronavirus (CoV). 
Saif and co-workers (Costantini et al., 2004) 
have clearly demonstrated the utility of the pig 
as a model to understand the mechanisms for 
‘super-spreaders’ and the atypical pneumonia 
and variable diarrhoea induced by the human 
CoV responsible for severe acute respiratory 
syndrome (SARS). The porcine model of 
SARS consists of utilizing the porcine respira-
tory CoV (PRCV), a spike deletion mutant of 
the enteric CoV transmissible gastroenteritis 
virus (TGEV), which shows striking pathoge-
netic similarities to the SARS CoV in its pri-
mary replication in the lung. Further research 
is justified to compare known immunological 

differences and similarities between mice, 
humans and pigs. Current work by Dawson 
et al. (2008) has revealed that pig immune 
responses are more similar to human 
responses than mouse responses for over 
80% of the variables compared, and that the 
mouse immune responses were more similar 
to human than pig responses is less than 10% 
of comparisons (Dawson et al., 2008). 
Genomic tools will continue to push existing 
animal models to evolve and novel models to 
be developed (Table 17.5).
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Table 17.5. Evolution of animal models generated by genomic tools.

Characteristic features Traditional view Current view Future view

Relevance to disease Anatomy, physiology, 
pathology and 
responses to 
therapeutics

Disease characteristics 
and therapies or 
devices tested

Selected based on specific 
disease and therapeutic 
responses

Practical considerations Dietary and housing 
requirements, 
husbandry, genetic 
uniformity and cost

Restricted to gene-rich 
species (worms, fruit fly, 
yeasts, rodents)

Emerging genomic profiles of 
animals with similar disease 
phenotypes to humans

Unique features Emergence of new 
technologies for gene 
manipulation; knock-in/
knockout; conditional 
gene activation

Recombineering multi-allelic 
substitutions; in vivo gene 
expression monitoring; 
enhanced phenotyping of 
disease progression; 
bioinformatics and 
predictive profiling

Ethical features Clear laws, 
regulations and 
policies

Pain and stress protocol 
issues

Unknown issues in addition to 
use of new species for 
biomedical-regulated 
animal protocols

Overall characteristics Practical and 
economical but 
relevance to human 
phenotype may be 
questioned

Genetically similar but is 
phenotype similar?

Ideal owing to recapitulating 
human condition
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