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The theoretical description of the forces that shape ecological
communities focus around two classes of models. In niche theory,
deterministic interactions between species, individuals and the
environment are considered the dominant factor, whereas in neu-
tral theory, stochastic forces, such as demographic noise, specia-
tion and immigration are dominant. Species abundance distribu-
tions predicted by the two classes of theory are difficult to distin-
guish empirically, making it problematic to deduce ecological dy-
namics from typical measures of diversity and community struc-
ture. Here we show that the fusion of species abundance data with
genome-derived measures of evolutionary distance can provide
a clear indication of ecological dynamics, capable of quantifying
the relative roles played by niche and neutral forces. We apply this
technique to six gastrointestinal microbiomes drawn from three
different domesticated vertebrates, using high resolution surveys
of microbial species abundance obtained from carefully curated
deep 16S rRNA hypervariable tag sequencing data. Although the
species abundance patterns are seemingly well fit by the neu-
tral theory of metacommunity assembly, we show that this theory
cannot account for the evolutionary patterns in the genomic data;
moreover our analyses strongly suggest that these microbiomes
have in fact been assembled through processes that involve a
significant non-neutral (niche) contribution. Our results demon-
strate that high-resolution genomics can remove the ambiguities
of process inference inherent in classical ecological measures,
and permits quantification of the forces shaping complex micro-
bial communities.

microbial ecology | niche theory | neutral theory | species abundance dis-
tribution | metagenomics

Abbreviations: OTU, operational taxonomic unit

Ecological species distributions are determined by the interplay
between environmental factors and evolutionary processes. In

classical ecological theory, niches, characterized, for example, by
nutrients and other environmental factors, determine species abun-
dance distributions and populations primarily through deterministic
partitioning of resources amongst species (1). Species populations
are limited by niche carrying capacity, rather than interspecies com-
petition, thus tending to promote coexistence (2). In niche theory,
diversity is determined primarily by the number of available niches,
raising the issue of how to account quantitatively for the apparent
observed diversity (3–6) from well-documented instances of niche
differences (7).

An alternative perspective is the class of neutral theories, in
which species are functionally equivalent, and stochastic factors such
as immigration, birth-death processes and speciation are the primary
drivers of ecological diversity and community structure (8–13). This
class of models has been reported to be capable of accurate pre-
dictions for the species abundance distributions in (e.g.) riverine

fish populations (14) or microbial populations (15), in addition to
the early successes in forest ecosystems, a planktonic copepod com-
munity, and a bat community in Barro Colorado Island (BCI) (10).
However, the methodology used in such comparisons is contentious
when examined carefully (16, 17), with sampling issues, parame-
ter estimation, and model definition being some of the key factors
that require careful attention. The assumptions of neutral theory,
in particular functional equivalence, are not transparently biologi-
cal (18), and additionally have been criticized on a variety of empir-
ical grounds (19, 20), including the predictions for species lifetimes,
speciation rates and the incidence of rare species (21). Other tech-
nical assumptions, for example that the number of individuals com-
peting for a resource is a constant (the “zero-sum” assumption), may
be unrealistic, but can be extended or relaxed (13, 22, 23). Perhaps
a more useful insight into the applicability of neutral theory comes
from considering the interplay between niche stabilization mecha-
nisms and fitness (24). A recent study of a sagebrush steppe com-
munity, where strong niche stabilization mechanisms were identified
even in the presence of apparently small fitness differences (25), un-
derscores the fact that weak functional inequivalence need not neces-
sarily mean that niche dynamics are negligible. On the other hand, a
study that attempted to infer pairwise interaction strengths among the
most abundant species in the BCI site found that interspecies interac-
tions were much weaker than intraspecies one, in apparent agreement
with neutral assumptions (26).

Despite their fundamental differences, and the plethora of stud-
ies nominally supporting each side of the niche-neutral dichotomy,
these theories predict species abundance distributions that are dif-
ficult to distinguish empirically (5, 27), with similar mathematical
properties for asymptotically large diversity (28). The inverse prob-
lem of inferring ecological dynamics from measures of diversity does
not appear to have a unique solution, either theoretically or empiri-
cally. Accordingly, a more nuanced perspective has arisen (2,19,29),
in which elements of both types of theory may contribute to a proper
description of the ecological dynamics, and a variety of mathemati-
cal frameworks for accomplishing this type of synthesis have recently
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appeared (26,30–35). Nevertheless, it remains an open question as to
how to properly characterize community dynamics, and how to use-
fully quantify the relative roles of niche and neutral processes in the
evolutionary dynamics of ecosystems.

These questions are of particular relevance to microbial commu-
nities, which play functionally important roles in ecosystems, but are
typically rich in diversity, suggesting the presence of sub-populations
shaped primarily by stochastic forces. Such communities would not
be expected to represent endmembers of the niche-neutral continuum,
and quantification of their structuring process represents a complex
problem that has recently attracted attention. Most studies find evi-
dence for a mixture of neutral and niche processes in microbial com-
munity assembly (36–40). These seem to arise for different physical
reasons. One indication is that the neutrally-assembling taxa are gen-
eralist microbes, that can exist in a wide variety of environments (38),
whereas the niche portion of the microbiota are adapted to the media
conditions (41). There are also indications that that microorganismal
coocurence patterns are shaped by the same processes and interac-
tions that shape macroorganismal coocurence patterns (42).

In this paper we propose a methodology for addressing the prob-
lem of quantifying the relative role of niche and neutral processes in
structuring microbial communities, by fusing measures of abundance
with phylogenetic information. The merging of classical ecological
measures with phylogenetic analysis is growing in importance, but
is still in its infancy (43–47). The method presented here is partic-
ularly applicable to uncultured microbial communities that are char-
acterized by a high level of diversity, and are amenable to modern
metagenomic tools, such as pyrosequencing.

In order to explain the basic idea of how we quantify an ecosys-
tem on the niche-neutral continuum, it is necessary to recall how
microbiomes can be probed by genomic methods. The first step in
an ecological study of a microbiome, following sequencing, cleanup
and alignment, is the assignment of sampled sequences into Oper-
ational Taxonomic Units (OTUs) through a clustering process (48).
The OTUs are then used as a proxy for estimating microbial species
abundance (49). The OTU data are two-fold. On the one hand, the
OTUs have relative abundances that are estimations of the species’
abundances in the environment. On the other hand, OTUs also have
representative sequences associated with them. Typically a repre-
sentative sequence of an OTU is the most abundant of the identical
clones within the OTU, and also it is more than 97% similar to every
other sequence within that OTU. This genomic data associated with
the representative sequence allows us to think of OTUs as points in
a sequence space as illustrated in Fig. 1. We can think of distances
between points in this space as corresponding to the phylogenetic or
sequence distances between the sequences in these OTUs.

This cloud of points in high-dimensional sequence space can also
be labeled by OTU abundance. In our work, this is determined by se-

Sequence space

OTU 1
OTU 2

Sequence or
phylogenetic
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Representative sequence:
CCAGGC-CG--TACC... Representative sequence:

GCAGGC-AGA-TTGC...

Fig. 1. Sketch of the starting point for a metagenomic analysis of an environ-
ment. Circles indicate OTUs, and abundance (number of sequences within the
OTU) is labeled by the size of the circle. A representative sequence is associated
with each OTU. The OTUs are embedded in a sequence space such that the dis-
tance between the circles in the sequence space corresponds to e.g. sequence
or phylogenetic distance between the representatives.

quence abundance (after every effort has been made to account for
artifacts), but in principle OTU abundance labels could be obtained
from any other source, such as Q-PCR. In this space, we can cat-
egorize the OTUs into two sorts: the most abundant OTUs (which
we term “modal” OTUs, and define this precisely below) and the
other, less abundant, OTUs (which we term “rare” OTUs, and de-
fine this precisely below). The correlations between the modal and
rare OTUs will depend upon the evolutionary dynamics, and in fact
exhibit sharp mathematical differences that can be used to discrimi-
nate different putative dynamics. To see the essential idea, we will
now explain how this would work in two caricatures of ecosystem
dynamics: a simplified neutral model and a simplified niche model.
A significantly more elaborate analysis is carried out below, in the
main body of this paper, but the key concepts are captured by these
simplified models.

First, suppose that the evolutionary dynamics is itself neutral,
so that the rare and modal OTUs are distributed at random in the
high-dimensional sequence space. We are going to be interested in
measuring the distances between sequences corresponding to differ-
ent OTUs, and comparing their similarity. Let us assume that the
sequences being analyzed are all of the same length, containing L
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Fig. 2. (a) Classification of the OTUs into two groups based on the rank abun-
dance. The top k% of OTUs are labeled modal, whereas the remainder of the
OTUs are labeled rare. (b) Sketch of the neutral and niche evolution processes
in sequence space. Light blue OTUs are rare, whereas red OTUs are modal. For
the neutral process, the average distance of a rare OTU to its closest modal OTU
is large (indicated by the arrow). For the niche process, this distance is much
smaller since rare OTUs cluster about the modal OTUs which define the niches.
(c) Sketch of the expected distributions of distance to the closest modal OTU. For
the neutral process, this distribution is peaked around some non-zero distance,
which is close to the average distance between the OTUs in the dataset. In the
niche process, the distribution monotonically decays with distance since the rare
OTUs are attracted to the niches.
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nucleotide bases from the usual 4-letter alphabet (ACGT); here we
are ignoring real life complications such as insertions, deletions and
gaps. We label the sequences by Siα, where α = 1 . . . L labels posi-
tion along the sequence and i labels the OTU; Siα can take the values
1,2,3,4 corresponding to the alphabet of bases ACGT. We define the
normalized Hamming distance Hij between two sequences i and j
as the fraction of bases in i that are different from the base in the
corresponding position in j:

Hij ≡
1

L

L∑
α=1

(1− δ(Siα − Sjα)) [1]

where δ denotes the Kronecker delta. The mean 〈H〉 of Hij aver-
aged over a large sample of random sequences would be 3/4, be-
cause there is a 1/4 chance that two bases at the same position are
identical. Thus, the probability distribution of H would be expected
to be a roughly bell-shaped curve, peaked around H = 3/4, with
a width dependent on the number of sequences. In practice, there
are complications due to insertions, deletions and gaps, but most
importantly, conserved positions. Bases that are highly conserved
cannot be appropriately modeled as being chosen randomly from the
alphabet. This can be taken into account by simply restricting the
above analysis to bases that are strongly non-conserved: let us call
the number of highly conserved bases M < L, so that the expected
value of H will now be reduced by the fraction of conserved bases:
〈H〉 = 3(L −M)/4L. Thus, taking into account conservation, the
bell-shaped curve will shift its peak to a smaller value of H . In the
data presented below, we found that L ∼ 200 and M ∼ 160, so that
the distribution of H should be peaked at about 0.15, in the case of a
neutral system. Now consider a subset {Ek} of distances{Hij}. For
each “rare” OTU k, we rank all of the distances between OTU k and
each “modal” OTU l. Then, we select the shortest such distance and
label it Ek. In this way, the set {Ek} is the set of distances of “rare”
OTUs to their nearest niche neighbor. For the above case where the
evolutionary dynamics is neutral-like, the distribution of E is also
a bell-shaped curve like the distribution of H . However, its mean
is slightly shifted to the smaller values, and its standard deviation is
smaller (because {E} is the subset of shortest distances from the set
of {H}). In other words, 〈E〉 < 〈H〉.

Second, let us consider a caricature of a system that is domi-
nated by niche dynamics. In the extreme (and unrealistic) case where
there is only one niche, occupied by one particular modal OTU, the
probability distribution of E will be a delta distribution peaked at
E = 0. In a more realistic model, where there is a cloud of rare
OTUs surrounding the modal OTU, having evolved from it by a few
point mutations, one would expect the probability distribution of E
to be peaked at E = 0, and then to monotonically decrease for
E > 0. In the case of a system with several niches, the probability
distribution for E will be somewhat more complicated, because one
needs to calculate the normalized Hamming distance from each rare
OTU to the nearest modal OTU, and this requires making a Voronoi
polyhedron construction in sequence space. Nevertheless, for small
values of E, the probability distribution will be dominated by the
single niche argument given above, and the functional form will be
unchanged: peaked at the origin and monotonically decreasing for
E > 0. These two caricatures for simplified models of ecosystem
structure are sketched in Fig. 2, and show that there are clear and
distinct signatures arising from the nature of the processes that have
structured the community.

In the remainder of this paper, we numerically evaluate the metric
for model systems in order to quantitatively and concretely confirm
the above heuristic description. We then describe how we have im-
plemented these ideas in a proof-of-principle study of vertebrate gas-
trointestinal microbiomes. These experimental systems were chosen,
not only because of the growing recognition of the importance of mi-

crobiomes as a determinant of host health (50), but also because these
are systems that have high diversity, and are likely to be shaped both
by stochastic and niche processes. Indeed, as we will see, they can
be well-described naively by neutral theory, although in fact niche
processes play a fundamental role in structuring these communities.

Model calculations
In this section we evaluate our metric on model systems parametrized
by a single parameter, α, the proportion of the system undergoing a
niche dynamic. We perform 5000 Monte Carlo simulations of the
following process. We simulate N OTUs (here N = 1000) each
with representative sequences of length L = 200. A subset αN
(0 ≤ α ≤ 1) of the OTUs undergo a niche dynamic in the following
way. A single random OTU is chosen to be the center of the niche.
The remainder of the αN − 1 OTUs (niche OTUs) are are gener-
ated by performing random mutations of the genome of the OTU
representing the niche center. The placement and number of the mu-
tations were chosen randomly in the following way. Placements of
mutations were sampled uniformly (without replacement) across the
entire genome. The number of mutations for each of the niche OTUs
was sampled from an exponential distribution thereby modeling the
evolution of OTUs under multiplicative fitness pressure (larger num-
ber of mutations corresponds to smaller fitness, and hence smaller
abundance of OTU). The remaining (1−α)N OTUs (neutral OTUs)
are randomly distributed throughout the sequence space, and they
represent the sequences undergoing dynamics under no evolutionary
pressure (neutral dynamics).

Each OTU in the model system is associated with an abundance.
The abundances of neutral OTUs are randomly sampled from an ex-
ponential distribution. (In the Hubbell Neutral Model, the OTU rank
abundances are exponentially distributed.) On the other hand, the
abundance of niche OTUs exponentially scales with their closeness
to the niche:

Ni = A exp(−di) [2]

where Ni is the abundance of OTU i and di is the distance from
the OTU to the center of the niche (in sequence space). The results
of our metric, the distributions of {Ek} are shown in Fig. 3 for 3
model systems characterized by values of α = 0, 0.5 and 1. We see
that the heuristic arguments we described in the previous section and
sketched out in Fig. 1(c) are consistent with these model numerical
calculations.
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Fig. 3. The results of our metric, the distributions of E shown for a fully Niche-
like model dataset (α = 1), a fully Neutral-like model dataset (α = 0) and an
intermediate dataset (α = 0.5). The results shown are the average of 5000
Monte Carlo simulations for each dataset.
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It is instructive to demonstrate the effects of two factors on our
metric, in order to highlight some of the mathematical considerations
that went into the design of the metric, in particular our use of an
extremal measure (the shortest distance aspect of our metric) and the
influence of sampled abundance distributions. First we demonstrate
the role of extremality introduced by choosing the subset {E}. In-
stead, if we choose to plot the distribution of {H} we obtain quali-
tatively the same results for neutral-like models (compare models 1
and 2 in Fig. S9). However, for niche-like models, the peak at zero
moves to a nonzero peak which corresponds to the average size of
the niche (compare models 5 and 6 in Fig. S9). Thus, the choice of
an extremal measure is important in making sure that the endmember
distributions (pure niche, pure neutral) are clearly distinct.

Second, we demonstrate what might appear at first to be a rather
counter-intuitive fact: the distribution of distances is only weakly de-
pendent on the abundance distribution of the OTUs. If the abundance
of an OTU k is Nk then we could imagine modifying our proce-
dure by weighting the contribution of Ek in the distribution {E} by
a factor of Nk. Such a weighting introduces no change whatsoever
to the neutral dataset (compare models 2 and 4 in Fig. S9), and no
qualitative change in the niche dataset (models 6 and 8 in Fig. S9).
Finally, we can also weigh the distribution of {H} in such a way that
each distanceHij between OTUs i and j gets weighted by a factor of
NiNj . The results are exactly the same as with no weighing for the
neutral dataset (compare models 1 and 3 in Fig. S9) and qualitatively
the same for the niche dataset (compare models 5 and 7 in Fig. S9).

Results
We performed a pyrosequencing study of the gastrointestinal (GI)
microbiomes of 3 pairs of domesticated vertebrates: 2 swine, 2 cat-
tle and 2 chickens. These pairs of organisms were chosen as pilots
for probing specific microbiome issues of relevance to animal sci-
ence. In particular, we attempted a comparative study looking at the
effects of diet on identically cloned swine, and the effects of a micro-
bial challenge on two identically-raised chickens. For the purposes
of this paper, these comparisons and the outcomes of the experiments
are not of interest: full details of the comparisons and other studies
will be published elsewhere. In this study, two genetically identical
cloned swine were fed different diets and then their fecal samples
were collected for sequencing. Cattle rumen 1 and cattle rumen 2
were rumen fistula sampled at 0 and 8 hours after feeding, respec-
tively (51). Chicken caecum 94 was inoculated with Campylobacter
jejuni one week prior to caecal sampling. Chicken caecum 1 was kept
under the same conditions but without oral gavage of C. jejuni (52).
See the Methods for details regarding the laboratory protocols. The
GI Samples were subjected to deep hypervariable 16S rRNA tag se-
quencing using a 454 Life Science Genome Sequencer GS FLX (49).
Supplementary Table S1 shows the average read length and number
of reads obtained for each sample.

Following their acquisition, we aligned the pyrosequenced reads
using NAST (53) to the SILVA (54) database. We also aligned
the reads using RDP’s frontend (55) to the Infernal (56) structural
aligner. For each dataset, the NAST+SILVA and RDP+Infernal mul-
tiple alignments were merged and hand curated using the method-
ology and tools described in Sipos et al. (48). Short reads and se-
quences with unknown nucleotides were removed. Spurious “tails”
in the multiple alignment, sequences that extend beyond the region of
16S common to all the sequences in the dataset, were also removed.
Distance matrices were generated from the multiple alignments, and
were then fed to a complete linkage clustering algorithm to generate
the OTUs. The careful multiple alignment procedure led to a vast re-
duction in the number of resulting OTUs in the datasets as previously
reported in Sipos et al. (48). See table S1 for multiple alignment,
species diversity and richness metrics for each of the 6 GI micro-

biome samples. Rarefaction curves show how the number of sampled
OTUs varies as a function of the number of organisms sampled. Our
rarefaction curves are shown in Fig. S2 for each of the 6 datasets.

We plotted the abundances of the OTUs for each of the 6 datasets
in our study, and we find a very good agreement with the Neutral
Model. These are displayed in rank-abundance form in Fig. 4, and
in alternative forms in Fig. S3 and S4. The early ranks (high abun-
dance OTUs) show some systematic deviation from the abundances
expected from neutral theory but at face value, these results are con-
sistent with the majority portion (thousands) of the OTUs evolv-
ing in the absence of any apparent selection acting on the individ-
ual OTUs. Given all the factors that influence the gastrointestinal
microbiome (57–62), and the reproducible, thereby seemingly host-
selected, microbial abundances (63), it seems counterintuitive that
there should be no apparent selection for the vast majority of OTUs
in the exponential tail of the rank abundance. However, if we com-
pare taxonomic assignments of microbes across each pair of animals
in our study (Fig. S5), we find that there is a correlation between the
relative abundances of taxa in members of each animal pair. Namely,
we observe that the most abundant taxonomic orders are the same
for each animal pair (Clostridiales for swine and chickens, and Pseu-
domonadales for cattle). This correlation also extends to other tax-
onomic orders. Hence, our dataset indicates that certain taxa are fa-
vored more than others within the GI tract of these 6 vertebrates.

We now attempt to resolve this apparent contradiction, namely
that the Neutral Theory fits the rank abundance patterns well, with
only 2 fitting parameters, even though the taxonomic data suggests
Niche selection. In order to do this, we must turn our attention
to other information contained within the pyrosequenced reads. As
shown in Fig. 1 the OTUs with their characteristic sequences and as-
sociated abundances form patterns within a high-dimensional space.
Each read constitutes a point in this space, defined by its nucleotide
sequence. One way in which we can attempt to comprehend the struc-
ture of this space is through dimensional reduction. We use Principal
Component Analysis (PCA) in order to place the OTUs into a 2 di-
mensional space spanned by the two principal components. We per-
form a weighted version of PCA (64) where we assign a weight to
the OTUs proportional to their abundance. The resulting patterns in
the space of two principal components are shown in Fig. S6. Each
circle in the figure is an OTU and the circles’ size and color indicates
the logarithm of the OTU abundance.

As a control, we generate datasets of artificially generated se-
quences (hereafter referred to as neutral datasets). We generate a
neutral dataset for each of the 6 experimental datasets to facilitate a
1-to-1 comparison. Each neutral dataset is constructed in a way such
that it has the same number of OTUs and the same OTU abundance
distribution as the associated experimental dataset. However, the rep-
resentative sequence for each OTU is artificially generated and has a
randomized sequence, with constraint such that it has the same se-
quence statistics as the original dataset (probability of observing a
nucleotide at a position in the multiple alignment) and column con-
servation. This ensures that the sequences are randomly distributed
along a realistic sub-manifold of sequence space (the subset of 16S
sequences that are allowed by secondary structure). We then run
the PCA on the neutral datasets (Fig. S7). Comparing Fig. S6 and
S7, we notice the following pattern in the experimental GI data: the
low-abundance OTUs cluster around the high-abundance OTUs in
the dimensionally reduced space. In the neutral datasets, this is not
observed, instead the PCA distributes the OTUs approximately uni-
formly in the dimensionally-reduced space.

We now formulate a heuristic to clearly discriminate between the
randomly assembled model sequences and those assembled from a
niche-driven process. On a rank-abundance curve, we label the k%
of the most abundant OTUs as modal OTUs. We label the remaining
OTUs as rare OTUs (Fig. 2(a)). Instead of using the whole-dataset
rank-abundance curve, one can also use per-order rank-abundance
curves if additional resolution is necessary. Once modal and rare
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Fig. 4. Comparison of rank abundance curves and neutral model fits for the six animal GI microbiomes. Lines indicate fits to the Hubbell’s neutral metacommunity
model. Parameter θ of the model is fit to correspond to the exponential tail in rank abundance. Offset represents the number of high-abundance OTUs that do not fit
the neutral model.

OTUs have been assigned, for each rare OTU we compute the dis-
tance to the modal OTU that is closest to it. The motivation behind
this heuristic is the following. The spread pattern of sequence abun-
dances gives us an indication of whether organisms are evolving neu-
trally or toward defined niches. In long time behavior, Neutral evolu-
tion leads to the expectation that organisms have an equal chance of
being anywhere in this space . Niche selection, however, suggests a
very biased distribution of organisms. In particular, organisms would
be densely clustered about the local optimum for each niche (Fig.
2(b)). These two scenarios lead to very different distributions of dis-
tance to nearest niche. If the OTUs are undergoing a niche-driven
dynamic, then the rare OTUs will tend to drop off exponentially in
abundance around the modal OTUs. If on the other hand, the OTUs
have been sampled from a community shaped by neutral evolution-
ary dynamics, then the rare OTUs’ distance to closest modal OTU
will be peaked around some non-zero distance that is the average dis-
tance between any two OTUs in the dataset (Fig. 2(c)).

We apply the above analysis to the case of gastrointestinal mi-
crobiome datasets of the 6 vertebrates. The results are summarized
in Fig. 5. In this figure, the blue bars indicate the results of our metric
applied to experimental data. The dashed red lines indicate the results
of the metric applied to a dataset of sequences that were randomized
in the way described above. The results indicate that the GI tracts of
the 6 vertebrates largely undergo niche dynamics, with the possible
exception of a subpopulation of the chicken GI tracts. The chicken
datasets have a small non-zero peak corresponding to the average dis-
tance between sequences chosen at random. Our study indicates that
the sequences within this peak may be undergoing neutral dynamics.
The results that we obtain are robust in that they do not qualitatively
depend upon the choice of the cutoff k. In Fig. S8 we show the met-
ric for k = 5% and k = 7%. Similarly, the results of the metric on
model systems are virtually unchanged when k is changed between
2% and 10% (Fig. S10) indicating robustness. Whereas our metric is

robust in this way, the reader is reminded that phylogenetic resolution
is nevertheless important: some niches may appear as a single OTUs
at 97% percent sequence identity.

Discussion
In this work, we set out to construct genomic-based measures of
ecosystem diversity and abundance that can provide evidence for pro-
cess. We focused on understanding the processes that structure mi-
crobial communities, because these play functionally important roles
in many ecosystems, yet are rich in diversity. Thus, such systems
would a priori be expected to contain at least sub-populations shaped
primarily by stochastic forces. The dual features of high diversity and
foundational role functionally in their host ecosystem suggests that
microbial communities would not be simple to characterize as either
niche or neutral. At the same time theoretical arguments suggest that
such high-diversity communities might appear, for fundamental sta-
tistical reasons, as neutral.

We succeeded in creating a quantitative metric that fuses abun-
dance and genomic data in order to determine whether an ecological
system is dominated by neutral evolution or by niche selection. The
key concept was to explore the correlations and associated probability
distributions between the most abundant members of the community
and the long, low abundance tail members. We showed that the signa-
ture of the probability distribution describing the distance in genomic
sequence space from each rare OTU to the nearest modal OTU pro-
vided a signature of the strength of niche dynamics. We tested this
construct on large datasets from 6 animal gastrointestinal tract mi-
crobiomes, finding in all cases that the results are inconsistent with
neutral assembly. We conclude that niche selection largely dominates
within the GI microbiome, despite the fact that the rank abundance
patterns are apparently well-modeled by Neutral Theory.

Our results provide firm evidence from an empirical dataset that
apparently neutral patterns of diversity and abundance can arise from
niche-dominated dynamics, in agreement with earlier theoretical ex-
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pectations (2, 5, 19, 27–29). Our results establish definitively that
simple ecological measures need to be, and can be, augmented by
genomic data in order to provide insight into the processes that struc-
ture communities.

Materials and Methods

Sample Preparation. All procedures involving animals were approved by the
Institutional Animal Care and Use Committee of the University of Illinois. For
each animal, we used two different samples for our test that vary in some aspect
such as diet or sampling times. The Duroc sow (2-14; TJ Tabasco) was used
as the genomic template for producing cloned animals using somatic cell nuclear
transfer. Tabasco was used to produce the CHORI 242 BAC library which was
used to generate the full pig genome sequence (65). The clones were born by
vaginal delivery and allowed to suckle. They were weaned at 4 weeks of age
and continuously housed together. They were not vaccinated or ever in contact
with other pigs after weaning. Pigs were fed once daily in the morning and had
free access to water. Fecal samples were collected on day 14 (the last day of
that feed rotation) of each diet for a total of 4 samples for each animal. Sam-
ples were collected from the rectum into a sterile tube and frozen at -80 ◦C until
time of analysis. Bovine rumen samples were collected as previously reported in
ref. (51). Chicken caeca were collected as previously reported in ref. (52).

Sequencing. Swine and cattle samples were sequenced using PCR product
from PCR specific primers flanking the V1-V3 region of bacterial 16S rDNA (66).
The forward fusion primers for pyrosequencing included 454 Life Science’s A
adapter, and barcode A fused to the 5’ end of the V1 primer 27F. In chicken the
V3 primer 341F was used. In all samples, the reverse fusion primer included
454 Life Science’s B adapter (lowercase) fused to 5’ end of V3 primer 534R. The
fragments in the amplicon libraries were subjected to a single pyrosequence run
from the V3 primer end using a 454 Life Science Genome Sequencer GS FLX
(Roy J. Carver Biotechnology Center, University of Illinois).

Rank-abundance, Species-abundance, Preston Plots and Taxa Distribu-
tions. The reads from cattle and swine microbiomes were cleaned up using
the method recommended in ref. (67). For the chicken caecum microbiome we

removed all sequences shorter than 100 bp. The ends of all reads were trimmed
so that the sequences start and end in the same place in the 16S rRNA con-
sensus structure. All remaining sequences were then aligned using the method
described in ref. (48). The OTUs were clustered using complete linkage (68)
3% sequence identity with the denominator 4 from (69) (counting indels as dif-
ferences). The OTU abundance data for rank-abundance was then binned into
a histogram using the method in Adami and Chu (70). Species-abundance and
Preston plots were generated following ref. (71). Neutral model curves were
generated using the algorithm for the sampling organisms from a neutral meta-
community (10). Hubbell’s θ parameter was fixed to match the exponentially
decaying tail of the rank abundance. Offset was chosen by a least-squares
method. Taxonomy assignments and comparison of libraries was made with the
Library Compare tool (72) at RDP (55).

PCA Ordination. In Fig. S6 we show the results of Principal Component Anal-
ysis on our OTU data. In performing this calculation, each OTU was associated
with a vector of real numbers of dimension 4L whereL is the length of the mul-
tiple alignment. The elements of the vectors were calculated in the following way.
Each nucleotide within the multiple alignment is represented by a sub-vector of 4
numbers, A is (1, 0, 0, 0), C is (0, 1, 0, 0), G is (0, 0, 1, 0), T is (0, 0, 0, 1),
whereas the gap is represented as (0, 0, 0, 0). The vector associated with the
OTU is then the arithmetic average of the vectors associated with each sequence
within the OTU. We then perform the weighted PCA procedure (64) where we
weigh each OTU by its abundance.

Closest-distance metric. We used the percent sequence distance metric in
Fig. 5. The randomized dataset (red line) was generated in the following way.
Each OTU (with its associated abundance) was replaced by a representative ran-
domized sequence. This sequence was generated by selecting each nucleotide
from a distribution of probabilities generated from the sequence reads. In this way,
the base pair distribution for each position in the multiple alignment of the model
dataset is the same as that of the experimental dataset. Furthermore, since
the abundances of OTUs are kept, the rank abundance of the model dataset is
exactly the same as that of the experimental dataset.
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5. J Chaveé, H C Muller-Landau SAL (2002) Comparing classical community models:

theoretical consequences for patterns of diversity. Am. Nat. 159:1–23.
6. Silvertown J (2004) Plant coexistence and the niche. Trends Ecol. Evol. 19:605–611.
7. Wright S (2002) Plant diversity in tropical forests: a review of mechanisms of

species coexistence. Oecologia 130:1–14.
8. Caswell H (1976) Community structure: a neutral model analysis. Ecol. Monogr.

46:327–354.
9. Bell G (2000) The distribution of abundance in neutral communities. Am. Nat.

155:606–617.
10. Hubbell S (2001) The Unified Neutral Theory of Biodiversity and Biogeography

(Princeton University Press, Princeton).
11. Bell G (2001) Neutral macroecology. Science 293:2413–2418.
12. Chave J (2004) Neutral theory and community ecology. Ecol. Lett. 7:241–253.
13. Rosindell J, Hubbell S, Etienne R (2011) The Unified Neutral Theory of Biodiversity

and Biogeography at Age Ten. Trends Ecol. Evol. 26:340–348.
14. Muneepeerakul R, et al. (2008) Neutral metacommunity models predict fish diversity

patterns in Mississippi–Missouri basin. Nature 453:220–222.
15. Woodcock S, et al. (2007) Neutral assembly of bacterial communities. FEMS Micro-

biol. Ecol. 62:171–180.
16. McGill B (2003) A test of the unified neutral theory of biodiversity. Nature 422:881–

885.
17. McGill B, Maurer B, Weiser M (2006) Empirical evaluation of neutral theory. Ecology

87:1411–1423.
18. Hubbell S (2005) Neutral theory in community ecology and the hypothesis of func-

tional equivalence. Funct. Ecol. 19:166–172.
19. Leibold M, McPeek M (2006) Coexistence of the niche and neutral perspectives in

community ecology. Ecology 87:1399–1410.
20. Purves D, Turnbull L (2010) Different but equal: the implausible assumption at the

heart of neutral theory. J. Anim. Ecol. 79:1215–1225.
21. Ricklefs R (2006) The unified neutral theory of biodiversity: Do the numbers add

up? Ecology 87:1424–1431.
22. Etienne R, Alonso D, McKane A (2007) The zero-sum assumption in neutral biodi-

versity theory. J. Theor. Biol. 248:522–536.
23. Allouche O, Kadmon R (2009) A general framework for neutral models of community

dynamics. Ecol. Lett. 12:1287–1297.
24. Adler PB, Rislambers JH, Levine JM (2007) A niche for neutrality. Ecol. Lett. 10:95–

104.
25. Adler P, Ellner S, Levine J (2010) Coexistence of perennial plants: an embarrass-

ment of niches. Ecol. Lett. 13:1019–1029.
26. Volkov I, Banavar J, Hubbell S, Maritan A (2009) Inferring species interactions in

tropical forests. Proc. Natl. Acad. Sci. USA 106:13854–13859.
27. Purves D, Pacala S, Burslem D, Pinard M, Hartley S (2005) in Biotic interactions

in the tropics: their role in the maintenance of species diversity, eds Burslem DF,
Pinard MA, Hartley SE (Cambridge University Press, Cambridge), pp 107–138.

28. Chisholm R, Pacala S (2010) Niche and neutral models predict asymptotically
equivalent species abundance distributions in high-diversity ecological communi-
ties. Proc. Natl. Acad. Sci. USA 107:15821–15825.

29. Gravel D, Canham C, Beaudet M, Messier C (2006) Reconciling niche and neutrality:
the continuum hypothesis. Ecol. Lett. 9:399–409.

30. Tilman D (2004) Niche tradeoffs, neutrality, and community structure: A stochastic
theory of resource competition, invasion, and community assembly. Proc. Natl.
Acad. Sci. USA 101:10854–10861.

31. Cadotte M (2007) Concurrent niche and neutral processes in the competition–
colonization model of species coexistence. Proc. R. Soc. B 274:2739–2744.

32. Zillio T, Condit R (2007) The impact of neutrality, niche differentiation and species
input on diversity and abundance distributions. Oikos 116:931–940.

33. Loreau M, de Mazancourt C (2008) Species Synchrony and Its Drivers: Neutral
and Nonneutral Community Dynamics in Fluctuating Environments. Amer. Nat.
172:48–66.

34. Doncaster C, Cornell S (2009) Ecological Equivalence: A Realistic Assumption for
Niche Theory as a Testable Alternative to Neutral Theory. PLoS ONE 4:e7460.

35. Haegeman B, Loreau M (2011) A mathematical synthesis of niche and neutral the-
ories in community ecology. J. Theor. Biol. 269:150–165.

36. Dumbrell A, Nelson M, Helgason T, Dytham C, Fitter A (2009) Relative roles of niche
and neutral processes in structuring a soil microbial community. ISME J. 4:337–345.

37. Zhang Q, Buckling A, Godfray H (2009) Quantifying the relative importance of
niches and neutrality for coexistence in a model microbial system. Funct. Ecol.
23:1139–1147.

38. Langenheder S, Székely AJ (2011) Species sorting and neutral processes are both
important during the initial assembly of bacterial communities. ISME J. 5:1086–
1094.

39. Ayarza JM, Erijman L (2011) Balance of neutral and deterministic components in
the dynamics of activated sludge floc assembly. Microb. Ecol. 61:486–495.

40. Ofiteru ID, et al. (2010) Combined niche and neutral effects in a microbial wastewater
treatment community. Proc. Natl. Acad. Sci. USA 107:15345–15350.

41. Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T (2011) Bacterial community
assembly based on functional genes rather than species. Proc. Natl. Acad. Sci.
USA 108:14288–14293.

42. Horner-Devine MC, et al. (2007) A comparison of taxon co-occurrence patterns for
macro- and microorganisms. Ecology 88:1345–1353.

43. Emerson B, Gillespie R (2008) Phylogenetic analysis of community assembly and
structure over space and time. Trends Ecol. Evol. 23:619–630.

44. Kelly C, Bowler M, Pybus O, Harvey P (2008) Phylogeny, niches, and relative abun-
dance in natural communities. Ecology 89:962–970.

45. Cavender-Bares J, Kozak K, Fine P, Kembel S (2009) The merging of community
ecology and phylogenetic biology. Ecol. Lett. 12:693–715.

46. Kembel S, et al. (2010) Picante: R tools for integrating phylogenies and ecology.
Bioinformatics 26:1463–1464.

47. Cadotte M, et al. (2010) Phylogenetic diversity metrics for ecological communi-
ties: integrating species richness, abundance and evolutionary history. Ecol. Lett.
13:96–105.

48. Sipos M, et al. (2010) Robust Computational Analysis of rRNA Hypervariable Tag
Datasets. PLoS ONE 5:e15220.

49. Huse SM, et al. (2008) Exploring microbial diversity and taxonomy using ssu rrna
hypervariable tag sequencing. PLoS Genet. 4:e1000255.

50. Badger JH, Ng PC, Venter JC (2011) in Metagenomics of the Human Body, ed Nelson
KE (Springer, New York), pp 1–14.

51. Brulc JM, et al. (2009) Gene-centric metagenomics of the fiber-adherent bovine
rumen microbiome reveals forage specific glycoside hydrolases. Proc. Natl. Acad.
Sci. USA 106:1948–1953.

52. Qu A, et al. (2008) Comparative Metagenomics Reveals Host Specific Metaviru-
lomes and Horizontal Gene Transfer Elements in the Chicken Cecum Microbiome.
PLoS ONE 3:e2945.

53. DeSantis TZ, et al. (2006) NAST: a multiple sequence alignment server for compar-
ative analysis of 16S rRNA genes. Nucleic Acids Res. 34:394–399.

54. Pruesse E, et al. (2007) SILVA: a comprehensive online resource for quality checked
and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res.
35:7188–7196.

55. Cole JR, et al. (2009) The Ribosomal Database Project: improved alignments and
new tools for rRNA analysis. Nucleic Acids Res. 37:D141–D145.

56. Nawrocki EP, Kolbe DL, Eddy SR (2009) Infernal 1.0: inference of RNA alignments.
Bioinformatics 25:1335–1337.
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# Unique Average Aligned # OTUs Simpson Shannon Jackknife ACE Chao1
reads reads length width at 3% diversity diversity richness richness richness

Swine 33283 14122 165.0 420 1509 0.0070 5.8 2000 1472 1540
feces 1 ±0.0003 ±0.02 ±260 ±55 ±150

Swine 36254 16198 175.3 418 1856 0.0068 5.9 2300 1633 1720
feces 2 ±0.0003 ±0.02 ±300 ±53 ±150

Cattle 31201 18264 180.7 471 2580 0.0044 6.3 3300 3070 2640
rumen 1 ±0.0002 ±0.02 ±260 ±88 ±190

Cattle 19642 10074 183.6 385 1509 0.0110 5.9 2070 1818 1830
rumen 2 ±0.0006 ±0.03 ±110 ±62 ±130

Chicken 17585 2151 136.5 310 396 0.084 4 770 655 620
caecum 1 ±0.003 ±0.03 ±120 ±75 ±150

Chicken 21646 2223 138.9 332 354 0.046 3.9 560 426 460
caecum 94 ±0.001 ±0.02 ±90 ±57 ±100

Table S1: Summary statistics of our six datasets.
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Figure S2: Rarefaction curves for the 6 vertebrate GI microbiomes. Solid line represents the median
number of OTUs (100 resamplings) whereas the shaded area represents the 95% confidence interval.
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Figure S5: Taxa Comparisons. Taxonomic assignments at order level for all libraries, at 80% confidence
threshold, sorted by combined abundance. Though there appear to be no differences in the form of the rank-
abundance curves, we see differences in the taxonomic distributions here as the result of changes in diet or
challenges to the microbial ecosystem.
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Figure S6: Weighted PCA ordination applied to the 6 experimental datasets. See the main text for
details on how weighted PCA was performed. Each circle in this Figure represents an OTU and its size and
color indicates the logarithm of OTU abundance.
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Figure S7: Weighted PCA ordination applied to the randomized datasets. Compare with Fig. S5.
See the main text for details on how the randomized datasets were generated, and how weighted PCA was
performed. Each circle in this Figure represents an OTU and its size and color indicates the logarithm of
OTU abundance.
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Figure S8: Histogram of distances of rare OTUs to the nearest modal OTU for each of the 6 gastrointestinal
microbiomes with cutoffs k = 3% and k = 7%. Red dashed lines indicate the results of the metric applied to
sequences that were randomized while preserving rank abundance and sequence statistics (see main text)).
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Figure S9: Explicit numerical calculations of our metric on 8 model systems. In these systems, we study the
difference between the effects of the metric on neutral (models 1-4) and niche model systems (models 5-8).
We also study the effect of choosing the closest distance (even-numbered models) compared to considering
all distances (odd-numbered models). Finally, we consider the weighted models (3-4 and 7-8) versus the
unweighted ones (1-2 and 5-6).
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Figure S10: Measuring the effect of the choice of k on our metric. Darkest lines indicate k = 2%, medium
lines indicate k = 6% and lightest lines indicate k = 10%. (a) α = 0.0 model (red dashed lines) and
α = 1.0 model (black solid lines). (b) α = 0.5 model (black solid lines).
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