Introduction

- Hepatocellular carcinoma (HCC) spans more than 780,000 new annual diagnoses & causes 750,000 yearly mortalities.
- Preclinical animal models represent pivotal tools for translational investigations to develop & test novel therapeutics for HCC both in vitro & in vivo.
- Development of clinically relevant systems to serve as a bridge between preclinical murine studies & human clinical practice is of vital importance.

The Oncopig Cancer Model (OCM) is a novel transgenic swine platform that recapitulates human cancer through development of site/cell specific tumors after Cre recombinase induced expression of heterozygous KRASG12D & TP53R172H transgenes.

In this study, we tested the hypothesis that isolation & transformation of OCM hepatocytes from multiple individuals results in development of phenotypically consistent porcine HCC (pHCC) cell lines which faithfully recapitulate the in vitro & in vivo features of human HCC.

Materials & Methods

- Fourteen pHCC lines were established from primary hepatocytes isolated from resected liver specimens (median 10.0, range 4.9-26.0 g) of 4- to 8-week-old OCMs (n = 14), with a median yield of 3.1 x 10^6 (range 7.0 x 10^5-1.3 x 10^7) cells/g & 57% (range 20-97%) viability.
- At 24-hours post-isolation, porcine hepatocytes were transformed into pHCC using Ad-Cre-green fluorescent protein (GFP) with median 92% (range 70-99%) efficiency, & were maintained in culture for median 11 (range 7-15) passages.
- Morphological & behavioral phenotyping of pHCC cells performed using qualitative & quantitative assays were compared to the most widely used human HCC cell line for in vitro investigations (HepG2).
- pHCC in vivo malignant potential was evaluated in SCID mice & OCM donors.

Transformation of Porcine Hepatocytes to pHCC

Figure 1. Representative photographs display (a) primary hepatocytes after isolation, (b) transformed hepatocytes displaying GFP, & (c) adherent pHCC cells (magnification 10x).

KRAST2D & TP53R172H Transgene Expression

Figure 2. Fourteen of 14 (100%) pHCC cell lines showed RT-PCR proven transgene expression on agarose gel electrophoresis, confirming malignant transformation. Above gel shows four representative cell lines.

Cell Cycle Length

Figure 3. Similar to human HCC, all pHCC cell lines exhibited Arginase-1 IHC positivity, indicating hepatocellular origin. Photographs display (a) & (b) pink cytoplasmic staining of representative pHCC cells with liver specific marker Afp1; (c) HepG2 cells show similar staining pattern.

Immunohistochemistry (IHC)

Figure 4. Cells stained with CFSE dye & tested for fluorescence at 0, 24, 48 h, & 72 h. Plot of median fluorescence intensity for 3 representative pHCC cell lines & HepG2 shows similar cell cycle length. Median pHCC cell cycle length was 13.5 (range 10.0-16.9) hours, similar to human HCC (15.1 hours).

SCID Mouse Xenografts

Figure 6. A suspension of 10^7 pHCC cells were inoculated into the SQ tissues of the bilateral flanks of SCID mice in 3 per pHCC cell line & confirmed malignant growth. Tumors were measured 3x weekly, & were harvested at 21 days post-injection. SQ tumors were successfully yielded after 76% (74/99) injections, & were median 6.1 x 5.4 mm in size (median volume = 65.4 mm^3), range 4.5-590.7 mm^3. Photograph (a) demonstrates visible tumor masses (arrows) in SCID mouse flank; photograph (b) depicts explanted tumor after animal subject euthanasia. (c) H&E histologic image reveals neoplastic epithelial cells characterized by variation in cytoplasmic & nuclear size, generally large nuclei with prominent single or multiple nucleoli; (d) pHCC xenograft growth curves for representative pHCC cell lines.

Migration Assay

Figure 5. For the migration assay, cells were grown in a culture-insert 2 well plate (bisd) for 24 h, & the intercellular gap distance was measured within 0, 4, 8, 9, & 24 h. Testing was performed in triplicate. Representative photographs (a-c) from pHCC migration assay demonstrate progressive gap closure. Median time to half gap closure for all pHCC cell lines was 7.5 (range 4.1-20.5) h, comparable to HepG2 (3 hours).

α-fetoprotein (AFP) Production

Figure 7. A suspension of 10^6 pHCC cells were inoculated into the SQ tissues of the bilateral flanks of individual donor OCMs (median 3 injections per pHCC cell line) to confirm malignant growth. Tumors were measured 3x weekly, & were stained positive once palpable. SQ tumors were successfully yielded after 69% (174/253) injections, & were median 17.2 x 14.0 mm in size (median volume = 1,628 mm^3), range 80.5-1,055 mm^3 within 3-4.5 days post-injection. Photograph (a) demonstrates visible tumor masses (arrows) in OCM SQ tumor. H&E histologic image (b) depicts neoplastic epithelial cells characterized by variation in cytoplasmic & nuclear size, generally large nuclei with prominent single or multiple nucleoli; vascularization of the mass & invasion into connective tissue or skeletal muscle also evident.

Conclusions

The results of the current work indicate that pHCC cell lines may be consistently developed from OCMs, & validates OCM pHCC as a platform which accurately replicates human cancer for translational research.

Bibliography